Acid Base Wrap up topics

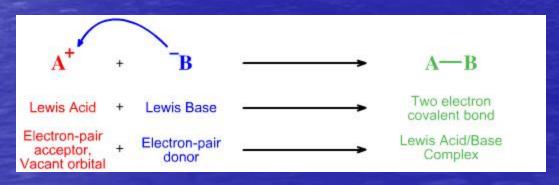
Lewis acid Bases
Structural indicators of the strength of acids
Non-metal oxides/ metal oxides
Amphoteric substances
Acidic properties of swimming pools

Schweitzer 1-29-05

Lewis Acid/Base

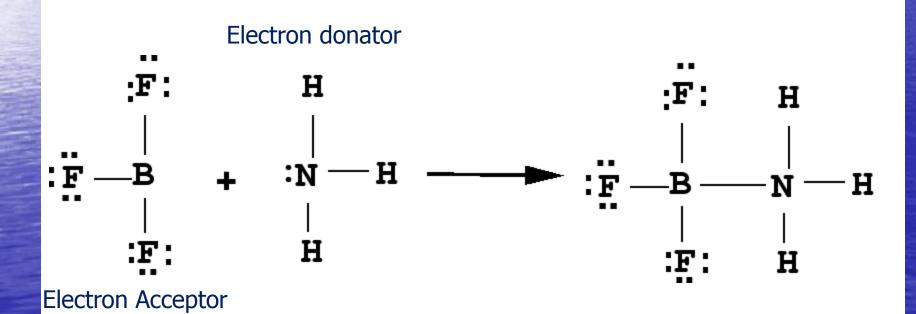
- Lewis acid is a different way to look at some type of acids.
- Lewis Acid/base reactions track the electrons rather then the protons.

- Lewis acids gain electrons
- Lewis bases lose electrons.


What do Lewis acid/base reactions look like?

$$^{\circ}$$
 X^+ + Y^- = XY

Electron Donator = Lewis base


Electron acceptor = Lewis acid

Lewis acid/base reactions will always look like this. Two substances coming together.

Question

• Which is the Lewis acid and base?

AP Question

- \circ AlCl₃ + Cl⁻ => AlCl₄⁻
- Which description applies to the reaction above?
- a. amphoterism
- b. anion hydrolysis
- c. Arrhenius neutralization
- d. Lewis acid base reaction
- e. Bronsted Lowery proton transfer

Acid Strength and Bond Strength

Note: Strength of a hydrogen bond is inversely proportional to the strength of acid.

The stronger the bond the weaker the acid.

Or.

The Weaker the bond the stronger the acid.

Strength of acids/bases

- What factors affect the strength of bonds and therefore Acids?
- 1. Electronegativity
- 2. Atomic radius

Acid Strength and Electronegativity

- The stronger the electronegativity and weaker the bond the stronger the acid. Especially true with in a period of the periodic table.
- \bullet HF > H₂O > NH₃ > CH₄
- \bullet HCl > H₂S > PH₃ > SiH₄

Oxyacid Strength and electronegativity

- Oxygen being one of the big three electronegative atoms (N,O,F) starve for electrons. They can steal electrons several bonds away. Hence the more oxygen atoms the more starved a Hydrogen atom becomes and the easier it is released.
- The relative acid strength of the following
- H₂SO₄ > H₂SO₃
- \bullet HNO₃ > HNO₂
- HClO₄ > HClO₃ > HClO₂ > HClO

Acid Strength and Size

HI > HBr > HCl > HF

- The larger the base atom the farther away the Hydrogen. Therefore the easier the hydrogen is lost.
- Shielding. The large number of electrons between the electrons and each nuclei lowers attraction as well.
- Generally speaking HI, HBr, HCl are so strong that they are thought of being equal. 100% dissociation.

Acid Base vs. Molecular Structure

- HCIO
 HCIO₂
 HCIO₃
 HCIO₄
- Why is one acid stronger then another?

Strength of oxyacids

- First... you should realize the trend of strength.
- HClO₄ is a strong acid so it must decrease as you go down.
- \bullet HClO < HClO₂ < HClO₃ < HClO₄
- Why? Electronegativity of oxygen pulls on the electron of the hydrogen. This lack of electrons causes the bond to weaken and therefore strengthen the acid.

AP Question

As the number of oxygen atoms increases in any series of oxygen acids, such as HXO, HXO₂, HXO₃ Which of the following is generally true?

- a. The acid strength varies unpredictably.
- b. The acid strength decreases only if X is a nonmetal
- c. The acid strength decreases only if X is a metal
- d. The acid strength decreases whether X is a nonmetal or a metal.
- e. The acid strength increases

Non-metal oxide + water yields acid

 $OO_2 + H_2O \rightarrow H_2CO_3 + H_2O \rightarrow H_3O^+ + HCO_3^-$

hydrolysis

- \circ SO₂ + H₂O \rightarrow H₂SO₃ + H₂O \rightarrow HSO₃ + H₃O⁺
- $P_2O_5 + H_2O \rightarrow H_3PO_4 + H_2O \rightarrow H_2PO_3^- + H_3O^+$
- Sulfur is a common element in coal. This is because coal came from dead organisms and Sulfur is essential to life. Therefore when you burn coal the sulfur oxidizes to SO₂ mixes with the water in the air to produce acid rain.

How I remember....

- Acid breath...CO₂ is acidic.
 - Non-metal oxides are acidic

- Conversely
 - Metal oxides are basic

Metal Oxide + Water yields Base

Na₂O + H₂O → NaOH → Na⁺ + OH⁻

Amphoteric Substances

 A substance that can act both as an acid and a base.

Ex $H_2PO_4^{-1}$

This substance can both gain and lose hydrogen atoms.

Gain: H₃PO₄

Lose: HPO₄-2

Amphoteric substances

Aluminum is amphoteric...

Al as a base.

- \rightarrow Al + H₂SO₄ \rightarrow Al₂(SO₄)₃ + H₂
 - Al will neutralize Sulfuric acid

Al as an acid

• Al + $H_2O \rightarrow Al(H_2O)^{+3}_6 \rightarrow Al(H_2O)_5OH^{+2} + H^{+1}_6$

Note: Dropping an aluminum can does not produce this reaction.... Why?

PH of pools

- What is used to chlorinate a pool.
- NaOCI Sodium Hypochlorite or Bleach
- $OC1^- + H_2O \leftrightarrow HOC1 + OH^-$

OCl is a weak base

How does OCI kill bacteria

OCl decomposes to Cl₂ gas and OH¹
 OCl¹ + H₂O ↔ Cl₂ + OH¹
 Chlorine is extremely reactive reducer meaning it gains electrons.

 $Cl_{2} + 2e^{-} \leftrightarrow 2Cl^{-}$

Never mix acids with bleach? Why

- People often think adding an acid which is a great cleaner with bleach which kills bacteria will make an even better cleaner.
- What really happens?

$$OCl^- + H_2O \leftrightarrow Cl_2 + OH^-$$

 $OCl^- + H_2O \leftrightarrow Cl_2 + OH^-$
 $OCl^- + H_2O \leftrightarrow Cl_2 + OH^-$

- Removing OH⁻ causes the reaction to shift toward products. Causing lots of Cl₂ to be produced.
- One good breath will be your last!!!

Test 1

- Which of the following substances are acidic, basic, or neutral.
- NH₃
- CaO
- \sim Ca(OH)₂
- NaF
- FeCl₂

Answer 1

- Which of the following substances are acidic, basic, or neutral.
- NH₃ basic. Can gain protons to form NH₄+
- CaO Metal oxide: basic forms
- Ca(OH)₂ basic: has OH², strong base even.
- NaF Basic: anion is the conjugate of weak acid
- FeCl₂ acidic, cation is conjugate of a weak base

Test 2

- Which of the following pairs is the strongest acid.
- HNO₂ or HNO₃

H₃PO₄ or H₃PO₃

Answer Test 2

- Which of the following pairs is the strongest acid.
- → HNO₂ or HNO₃
- H3PO₄ or H₃PO₃
- Answer: Increasing the number of oxygen increases the pull on electrons which weakens the H- bond.