Concentrations

Contents

- Molarity
- Molality
- Mole Fraction
- Percent by Mass
- Percent by Volume
- Parts per Million (PPM)
- Ionic vs. Molecular
- Stoichiometry

Molarity

- Molarity (M) = moles solute/Liter solution
- Molality (m) = moles of solute/Kg solvent
- What is the major difference between Molarity and molality?

Water $=1 \mathrm{~g} / \mathrm{mL}$ Right?

- The density of water changes and so does the volume.
- As the volume changes so does the molarity.
- Molality, based on mass of solvent, is temperature independent.

Mole Fraction

- Mole Fraction = moles X/ total moles
- 44 g of CO_{2} dissolved in 54 g of water.
Determine the mole fraction of each.

Mole Fraction

- Mole Fraction = moles $\mathrm{X} /$ total moles
- 44 g of CO_{2} dissolved in 54 g of water.
- Moles $\mathrm{CO}_{2}=1$
- Moles $\mathrm{H}_{2} \mathrm{O}=3$
- $X_{\text {co2 }}=1 / 4=.25$
- $X_{\mathrm{H} 2 \mathrm{O}}=3 / 4=.75$

Note: all mole fractions will always add to 1

Percent by volume/mass

- \% Mass = mass x/ total mass * 100
- \% volume = volume $\mathrm{x} /$ total volume * 100

Parts per Million (ppm)

- ppm is a form of concentration used mostly by biologist.
- Mass/total mass * 1,000,000 = ppm

ppm

- Another way to look at ppm.
- $1 \mathrm{mg} / 1 \mathrm{~L}$ of water
- $1 \mathrm{~L} \mathrm{H}_{2} \mathrm{O}=1000 \mathrm{~mL}$

Remember: mg/L

- $1000 \mathrm{~mL}=1000 \mathrm{~g}$
- $1000 \mathrm{~g}=1,000,000 \mathrm{mg}$
- $1 \mathrm{mg} / 1,000,000 \mathrm{mg}$ water

Ionic vs. Molecular

- Ionic compounds dissociate in solution increasing their concentrations

$$
\mathrm{NaCl} \rightarrow \mathrm{Na}^{+}+\mathrm{Cl}^{-}
$$

Ionic Solutes

Electrolyte: Conducts e^{-}

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Typical problem?

- 500 mL of $1.00 \mathrm{M} \mathrm{Na}_{3} \mathrm{PO}_{4}$ is added to 300 mL of water.
- What are the concentrations of each of the ion present?
Note: you also need to know what ions are present

answer

- 500 mL of $1.00 \mathrm{M} \mathrm{Na} 3 \mathrm{PO}_{4}$ is added to 300 mL of water.
- Dilution: M1V1 = M2V2

$$
M 1 \text { * } 500=x * 800
$$

$$
M 1 * 500 / 800=x
$$

- $\mathrm{Na}^{+}=1 \mathrm{M}^{*} 3=3 \mathrm{M}$ * $500 / 800=1.875 \mathrm{M}$
- $\mathrm{PO}_{4}{ }^{-3}=1 \mathrm{M} * 1=1 \mathrm{M} * 500 / 800=0.625 \mathrm{M}$

Solution Stoichiometry

- 25 mL of .5 M NaOH is mixed with 10 ml of . 25 M HNO 3 .
- Write out equation.
- Determine the number of moles.
- Determine the limiting reactant
- Determine the concentration of a excess reactant or product.

Typical Problem

What is the final concentration of Cl^{-}ion when 250 mL of $0.20 \mathrm{M} \mathrm{CaCl}_{2}$ solution is mixed with 250 mL of 0.40 M KCl solution?
a) 0.10 M
b) 0.20 M
c) 0.30 M
d) 0.40 M
e) 0.60 M

Typical Problem

What is the final concentration of Cl^{-}ion when 250 mL of $0.20 \mathrm{M} \mathrm{CaCl}_{2}$ solution is mixed with 250 mL of 0.40 M KCl solution?
a) 0.10 M
b) 0.20 M
c) 0.30 M
d) 0.40 M

We are adding .4 M to .4 M . This means the volume will stay .4M

Equation

- $\mathrm{NaOH}+\mathrm{HNO}_{3} \rightarrow \mathrm{NaNO}_{3}+\mathrm{H}_{2} \mathrm{O}$
- The relationships between volume, concentration, and rate used are all linear. Use this to your benefit.

Determine moles/limiting reactant $\mathrm{NaOH}+\mathrm{HNO}_{3} \rightarrow \mathrm{NaNO}_{3}+\mathrm{H}_{2} \mathrm{O}$

- $\mathrm{M}=\mathrm{mol} / \mathrm{L}$
- 25 mL of .5 M NaOH
- Moles = . 0125 mol
- 10 ml of $.25 \mathrm{M} \mathrm{HNO}_{3}$
- moles = . 0025 moles

They are being used at the same rate and since the HNO_{3} is in smaller quantity it is the LR.

Determine the concentration of the salt $\left(\mathrm{NaNO}_{3}\right)$
 $\mathrm{NaOH}+1 \mathrm{HNO}_{3} \rightarrow 1 \mathrm{NaNO}_{3}+\mathrm{H}_{2} \mathrm{O}$

Determine the number of moles of product.
$.0025 \mathrm{~mol} \mathrm{HNO}_{3}\left(1 \mathrm{NaNO}_{3} / 1 \mathrm{HNO}_{3}\right)=.0025 \mathrm{~mol} \mathrm{NaNO} 3$

Determine the number of concentration $\mathrm{M}=\mathrm{mol} / \mathrm{L}$
$\mathrm{Mol}=.0025$
Vol: $25 \mathrm{~mL}+10 \mathrm{~mL}=35 \mathrm{~mL}$ or .035 L $.0025 / .035=.0714 \mathrm{M}$
note: The volume is increased which dilutes everything.

Typical AP Problem

- How many mL of $0.40 \mathrm{M} \mathrm{FeBr}_{3}$ solution would be necessary to precipitate all of the Ag^{+}from 30 mL of a $0.40 \mathrm{M} \mathrm{AgNO}_{3}$ solution?
$\mathrm{FeBr}_{3}+3 \mathrm{AgNO}_{3} \rightarrow \mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}+3 \mathrm{AgBr}(\mathrm{s})$
a. 10
b. 20
c. 30
d. 60
e. 90

Typical AP Problem

- How many mL of $0.40 \mathrm{M} \mathrm{FeBr}_{3}$ solution would be necessary to precipitate all of the Ag^{+}from 30 mL of a $0.40 \mathrm{M} \mathrm{AgNO}_{3}$ solution?
$\mathrm{FeBr}_{3}+3 \mathrm{AgNO}_{3} \rightarrow \mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}+3 \mathrm{AgBr}(\mathrm{s})$
a. 10
b. 20
c. 30
d. 60
e. 90

