Equilibrium Lecture \#1

Schweitzer

What is equilibrium?

- Remember
- Equilibrium process between to competing reactions.
- At equilibrium the forward process is equal to the reverse process.
- *** It appears that nothing is happening***

Practice Problem

(Ebbing14.10)
A state of dynamic equilibrium exists at constant temperature in

1. a stoppered flask half full of water
2. an open pan of boiling water.
3. a stoppered flask of a solution of sodium carbonate solution
a. 1 only
b. 2 only
c. 3 only
d. 1 and 2 only
e. 1 and 3 only

Practice Problem

(Ebbing14.10)
A state of dynamic equilibrium exists at constant temperature in

1. a stoppered flask half full of water
2. an open pan of boiling water.
3. a stoppered flask of a solution of sodium carbonate solution
a. 1 only
b. 2 only
c. 3 only
d. 1 and 2 only
e. 1 and 3 only

Writing equilibrium Expressions

- $2 \mathrm{~A}(\mathrm{~s})+\mathrm{B}(\mathrm{aq})<=>2 \mathrm{C}(\mathrm{g})+\mathrm{D}(\mathrm{aq})$
- Notice: There are now substances on both sides of the reaction.
- Kc
- This is a K for a general reaction
- "c" stands for general concentrations.
- $\mathrm{Kc}=[\mathrm{C}]^{2}[\mathrm{D}] /[\mathrm{B}]$
- Note: The solid does not show up in Equilibrium Expression.

What is the difference between Kc and Kp

- Kc
- Measures all units in Moles/Liter
- Can not include pure solids and liquids
- Kp
- Measures all units in Atmospheres
- Only includes gases

Practice writing equilibrium expressions

- $2 \mathrm{~A}(\mathrm{~s})+\mathrm{B}(\mathrm{aq})<=>2 \mathrm{C}(\mathrm{g})+\mathrm{D}(\mathrm{aq})$
- Kp
- This is a K for a general reaction
- "p" stands for Pressure (atmospheres).
- $K p=[C]^{2 / 1}$
- Note: Only include gases

Write an equilibrium expression

$2 \mathrm{~A}(\mathrm{~g})+\mathrm{B}(\mathrm{s}) \Leftrightarrow 2 \mathrm{C}(\mathrm{l})+\mathrm{D}(\mathrm{aq})$
$\mathrm{Kc}=[\mathrm{D}][\mathrm{A}]^{2}$
$K p=1 /[A]^{2}$
Remember: all units are in ATM and only gases are used

Problems involving Equilibrium

-What information can a problem give you?

- They can give you the equilibrium constant.
- They can give you initial conditions
- They can give you equilibrium conditions

Note:

- Equilibrium conditions can be put directly into the equilibrium expression.
- THE FOLLOWING PROBLEMS ARE GOING TO BE DIFFERENT COMBINATIONS OF THIS INFORMATION. THERE ARE NOT THAT MANY DIFFERENT TYPES OF PROBLEMS KEEP TRACK...

Solving for Concentration given: K and starting materials

$$
\mathrm{CO}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \Leftrightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{CH}_{4}(\mathrm{~g})
$$

Suppose you start with1 mol of each CO and water in a 50.0L vessel. How many moles of each substance are in the equilibrium mixture at 1000C? Kc = 0.58

What are they giving you here in this problem?

Answer

\[

\]

Look for alternate methods

$.58=x^{2} /(.02-x)(.02-x)$ Solve for X
$.58=x^{2} /(.02-x)^{2}$
Square root both sides
$+-.76=x / 0.0200-x$
Solve for x (x must be positive) $=0.0086$ Substitute into the equilibrium expression
$\mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \Leftrightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{CH}_{4}(\mathrm{~g})$
. 57
.57
.43
.43

Practice problem

- Ebbing597

Carbon monoxide and hydrogen react according to the following equation

$$
\mathrm{CO}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

When 1 mol CO and 3 mol of H_{2} are placed in a 10 L vessel at 927C and allowed to come to equilibrium, the mixture is found to contain 0.387 mol of $\mathrm{H}_{2} \mathrm{O}$.

What is the concentration of each substance at equilibrium and what is Kc for the reaction.

Answer

\[

\]

Note: This is simply a stoichiometry problem.

$$
.1-.0387=.0613
$$

$$
.0387 * 3=.1161
$$

More Practice!!!

(Ebbing603)
Hydrogen lodide decomposes at a moderate temperature according to the following reaction

$$
2 \mathrm{HI}(\mathrm{~g}) \Leftrightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g})
$$

When 4.00 mol of HI was placed in a 5.00 L vessel at 458C, the equilibrium mixture was found to contain 0.422 mol of I_{2}. What is the value of Kc for this reaction at the specified temperature?

Answer

$$
\begin{array}{cccc}
& 2 \mathrm{HI}(\mathrm{~g}) \Leftrightarrow \mathrm{H}_{2}(\mathrm{~g}) & +\mathrm{I}_{2}(\mathrm{~g}) \\
\mathrm{I} . & .8 & 0 & 0 \\
\text { C } & -2 \mathrm{x} & +\mathrm{x} & +\mathrm{x} \\
\text { E } & .636 & .0844 & .0844
\end{array}
$$

Plug these concentrations into Kc expression $\mathrm{Kc}=.0201$

What if they give you equilibrium concentrations?

- An equilibrium mixture of gases contains .30 $\mathrm{mol} \mathrm{CO}, 0.10 \mathrm{~mol}$ of H_{2}, and $0.20 \mathrm{~mol}_{\mathrm{H}}^{2} \mathrm{O}$, plus an unknown amount of CH_{4}. The total volume of the system is 1 Liter. Kc for this reaction $=$ 3.92

$$
\mathrm{CO}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})+\mathrm{CH}_{4}(\mathrm{~g})
$$

Answer

$$
\mathrm{CO}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})+\mathrm{CH}_{4}(\mathrm{~g})
$$

E . $30 \quad .10 \quad .020 \quad$?
Note: These are all equilibrium conditions.
These can be plugged directly in the Kc expression.
$3.92=\left[\mathrm{CH}_{4}\right][.02] /[.30][.10]^{3}$
$\mathrm{CH}_{4}=0.059 \mathrm{M}$

Calculating percent change

- Very often the percent change will be used to tell the extent of a reaction (amount it moves to product)
- Or they will want you to calculate \% Change
- \% change $=$ Change/original $\times 100$

Using percent change

- Reaction $\mathrm{A}(\mathrm{g})=2 \mathrm{~B}(\mathrm{~g})+\mathrm{C}(\mathrm{g})$ is ran at 100 C and the initial concentration of A was .1 M . $\mathrm{Kc}(\mathrm{A})=1.0 \mathrm{E}-8)$
- What is the percent change of A in this reaction at equilibrium

Answer

- \% change = Change/original $\times 100$
$\mathrm{A}(\mathrm{g})=2 \mathrm{~B}(\mathrm{~g})+\mathrm{C}(\mathrm{g})$
I. 1000

C $-x+2 x+x$
E .1-x $2 x \quad x$
$1.0 \mathrm{E}-8=[2 \mathrm{x}]^{2}[x] / .1$
$1.0 \mathrm{E}-8=4 \mathrm{x}^{3} / .1$

Predicting the direction of a reaction using reaction quotient

- We used the reaction quotient when we predicted whether a reaction would precipitate or not.
- If $Q>K$ Then the mixture has too much product and will therefore shift toward reactant.
- If $Q<K$ Then the mixture has too much reactant and will therefore shift toward product.

Practice

(Ebbing610)
A 50.0 L reaction vessel contains $1.0 \mathrm{~mol} \mathrm{~N}_{2}, 3.00$ $\mathrm{mol} \mathrm{H}_{2}$, and .500 mol of NH_{3}. Will more ammonia, NH_{3} be formed or will it dissociate when the mixture goes to equilibrium?

The equilibrium constant $(\mathrm{k})=0.500$

Answer

- $\mathrm{Q}=\left[\mathrm{NH}_{3}\right]^{2} /\left[\mathrm{N}_{2}\right]\left[\mathrm{H}_{2}\right]^{3}$
- $Q=(0.0100)^{2} /(0.0200)(0.0600)^{3}$
- $Q=23.1$

And
$\mathrm{K}=0.500$
So
Q > K So we have to much product.
Reaction will shift back toward reactant

