EQUILIBRIUM LECTURE 2 Manipulating equilibrium constants

Schweitzer

Conversion between Kc and Kp

- What if you are given either a Kc and a Kp and you want to find the corresponding Kp or Kc.
Example

$$
1 \mathrm{~A}(\mathrm{~g})+1 \mathrm{~B}(\mathrm{~g})<=>2 \mathrm{C}(\mathrm{~g})
$$

If Kc for this reaction $=10$ then what is the Kp for this reaction?

How do you solve?

First, there is a short cut!!!!

Products - Reactants

$$
2-2=0
$$

If the coefficient of the products = the coefficient of the reactants then the $\mathrm{Kc}=\mathrm{Kp}$

Practice

$$
1 \mathrm{~A}(\mathrm{~g})+1 \mathrm{~B}(\mathrm{~s})<=>2 \mathrm{C}(\mathrm{~g}) @ 25 \mathrm{C}
$$

Note: The short cut only uses gases so the short cut will not work for this reaction.

If $K c=10$; What is $K p$?

$\mathrm{Kp}=\mathrm{Kc}(\mathrm{RT})^{\Delta \mathrm{n}}$
$\mathrm{n}=$ Products(moles of gaseous) - Reactants (moles of gaseous)

$$
\begin{aligned}
\mathrm{R} & =.0821 \mathrm{~L} \text { atm } / \mathrm{mol} \mathrm{~K} \\
\mathrm{Kp} & =10\left(.0821^{*} 298\right)^{2-1} \\
\mathrm{Kp} & =\text { Calculate this!!! }
\end{aligned}
$$

Practice

- (ebbing14.14)
- For which of the following equilibria would $\mathrm{Kc}=$ Kp?
- a. $\mathrm{CO}(\mathrm{g})+3 \mathrm{H}_{2}(\mathrm{~g}) \leftrightarrow \mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
- b. $\mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \leftrightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})$
- c. $\mathrm{CO}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{~g}) \leftrightarrow \mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})$
- d. $\mathrm{CO}(\mathrm{g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \leftrightarrow \mathrm{CO}_{2}(\mathrm{~g})$
- e. $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \leftrightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$

Practice

- (ebbing14.14)
- For which of the following equilibria would $\mathrm{Kc}=$ Kp?
- a. $\mathrm{CO}(\mathrm{g})+3 \mathrm{H}_{2}(\mathrm{~g}) \leftrightarrow \mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
-b. $\mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \leftrightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})$
- c. $\mathrm{CO}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{~g}) \leftrightarrow \mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})$
- d. $\mathrm{CO}(\mathrm{g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \leftrightarrow \mathrm{CO}_{2}(\mathrm{~g})$
- e. $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \leftrightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$

Manipulation of Constants

$$
\begin{gathered}
\mathrm{N}_{2(g)}+3 \mathrm{H}_{2(g)} \leftrightarrow 2 \mathrm{NH}_{3(g)} \mathrm{K}=4.1 \mathrm{E} 8 \\
\mathrm{~K}=\left[\mathrm{NH}_{3}\right]^{2} /\left[\mathrm{H}_{2}\right]^{3}\left[\mathrm{~N}_{2}\right]
\end{gathered}
$$

What would happen to the K if the reaction is reversed?

$$
\begin{gathered}
2 \mathrm{NH}_{3(\mathrm{~g})} \leftrightarrow 3 \mathrm{H}_{2(\mathrm{~g})}+\mathrm{N}_{2(\mathrm{~g})} \\
\mathrm{K}=\left[\mathrm{H}_{2}\right]^{3}\left[\mathrm{~N}_{2}\right] /\left[\mathrm{NH}_{3}\right]^{2} \\
\mathrm{~K}_{\text {new }}=1 / \mathrm{K}_{\text {original }} \\
\mathrm{K} \text { is inverted }
\end{gathered}
$$

Manipulation of Constants

$$
\begin{gathered}
\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \leftrightarrow 2 \mathrm{NH}_{3(\mathrm{~g})} \mathrm{K}=4.1 \mathrm{E} 8 \\
\mathrm{~K}=\left[\mathrm{NH}_{3}\right]^{2} /\left[\mathrm{H}_{2}\right]^{3}\left[\mathrm{~N}_{2}\right]
\end{gathered}
$$

- What would happen to K if the reaction is multiplied ?

$$
\begin{gathered}
2 \mathrm{~N}_{2(\mathrm{~g})}+6 \mathrm{H}_{2(\mathrm{~g})} \leftrightarrow 4 \mathrm{NH}_{3(\mathrm{~g})} \\
\mathrm{K}=\left[\mathrm{NH}_{3}\right]^{4} /\left[\mathrm{H}_{2}\right]^{6}\left[\mathrm{~N}_{2}\right]^{2} \\
\mathrm{~K}_{\text {new }}=1.681 \mathrm{E} 17
\end{gathered}
$$

** Multiplying all the coeffiencents together will cause the

$$
\mathrm{K}_{\text {new }}=\mathrm{k}_{\text {(original) }}{ }^{2}
$$

The k is always raised to the power of what ever the coefficients are multiplied or divided.

Manipulation of constants

$$
\begin{gathered}
\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \leftrightarrow 2 \mathrm{NH}_{3(\mathrm{~g})} \mathrm{K}=4.1 \mathrm{E} 8 \\
\mathrm{~K}=\left[\mathrm{NH}_{3}\right]^{2} /\left[\mathrm{H}_{2}\right]^{3}\left[\mathrm{~N}_{2}\right]
\end{gathered}
$$

- What would happen to K if the reaction is multiplied?

$$
\begin{gathered}
1 / 2 \mathrm{~N}_{2(\mathrm{~g})}+11 / 2 \mathrm{H}_{2(\mathrm{~g})} \leftrightarrow 1 \mathrm{NH}_{3(\mathrm{~g})} \\
\mathrm{K}_{\text {new }}=\left(\mathrm{K}_{\text {original }}\right)^{1 / 2}
\end{gathered}
$$

Note: raising to the $1 / 2$ power is the same as square rooting.

Practice

- (ebbing14.12)
- If $K=0.145$ for $A_{2}+2 B==2 A B$, then for $A B==$ $B+1 / 2 A_{2}$, K would equal
- a. 0.145
-b. -0.145
- c. 0.381
- d. 2.63
- e. 6.90

Practice

(ebbing14.12)

- If $K=0.145$ for $A_{2}+2 B==2 A B$, then for $A B==B+1 / 2 A_{2}$, K would equal
- a. 0.145
-b. -0.145

$$
\mathrm{K}_{\text {new }}=(1 / 0.145)^{1 / 2}
$$

- c. 0.381
-d. 2.63
- e. 6.90

Elementary reactions

- Very often when you see a reaction it is actually a combination of several smaller individual reactions (elementary reactions)

$$
\begin{aligned}
& \text { Step 1: } A+B=>C \\
& \text { Step 2: } C+A=>D
\end{aligned}
$$

Intermediate: Substance produced and consumed with in a reaction.
These are removed from overall rxn.

Overall: $A+B+C+A \Rightarrow C+D$

$$
2 A+B=>D
$$

$$
\mathrm{K}_{12}=\mathrm{K}_{1} * \mathrm{~K}_{2}
$$

Step 1: $A+B=>C \quad K_{1} .50$
Step 2: C + A => D K $\quad .20$

Overall: $2 A+B$ => $K_{12} .1$

Problem

Given the equilibrium constants for the following reactions what is the new K_{12}

- $\left.4 \mathrm{Cu}(\mathrm{s})+\mathrm{O}_{2} \mathrm{~g}\right)$ «2Cu2 $(\mathrm{s}), \mathrm{K} 1$
- $2 \mathrm{CuO}(\mathrm{s})<\mathrm{Cu}_{2} \mathrm{O}(\mathrm{s})+1 / 2 \mathrm{O}_{2}, \mathrm{~K} 2$
- $2 \mathrm{Cu}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g})$ < $2 \mathrm{CuO}(\mathrm{s}) \mathrm{K}_{12}=$?
- a. K1 * K2
d. $\mathrm{K}_{2}{ }^{1 / 2} / \mathrm{K} 1$
-b. $\mathrm{K} 1^{1 / 2}{ }^{*} \mathrm{~K} 2$
e. $\mathrm{K} 1^{*} \mathrm{~K} 2^{1 / 2}$
- c. $\mathrm{K} 1^{1 / 2} / \mathrm{K} 2$

Problem

Given the equilibrium constants for the following reactions what is the new K_{12}

- $\left.4 \mathrm{Cu}(\mathrm{s})+\mathrm{O}_{2} \mathrm{~g}\right)$ «2Cu2 $(\mathrm{s}), \mathrm{K} 1$
- $2 \mathrm{CuO}(\mathrm{s})$ < $\mathrm{Cu}_{2} \mathrm{O}(\mathrm{s})+1 / 2 \mathrm{O}_{2}, \mathrm{~K} 2$
- $2 \mathrm{Cu}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g})$ < $2 \mathrm{CuO}(\mathrm{s}) \mathrm{K}_{12}=$?
- a. K1 * K2
d. $\mathrm{K}_{2}{ }^{1 / 2} / \mathrm{K} 1$
-b. $\mathrm{K} 1^{1 / 2}{ }^{*} \mathrm{~K} 2$
e. $\mathrm{K} 1^{*} \mathrm{~K} 2^{1 / 2}$
- c. $\mathrm{K} 1^{1 / 2} / \mathrm{K} 2$

Answer

- (2G20)
- $2 \mathrm{Cu}(\mathrm{s})+\mathrm{O}_{2}$ (g) « 2 CuO (s) $\mathrm{K}_{12}=$?

You are going to have to rearrange the two elementary steps in order to add up to the overall reaction.
$1^{\text {st }}$ check to see if the reactants and products are on the right sides. Flip reaction to get correct!
$2^{\text {nd }}$ Multiply or divide so coefficients add up

