EQUILIBRIUM LECTURE 3 Le Chatelier's Principle

Schweitzer

Consider this reaction...

$$
\begin{array}{lll}
\text { A(g) } \Leftrightarrow \mathrm{B}(\mathrm{~g}) \\
\text { I. } 100 & 0 & \text { Notice this reactions } \\
\text { C. } & \quad \begin{array}{l}
\text { equilibrium }
\end{array} \\
\text { E. } 50 & 50
\end{array}
$$

What would happen to the reaction we removed all of B ?

$$
\begin{array}{ll}
& \mathrm{A}(\mathrm{~g})
\end{array} \Leftrightarrow \mathrm{B}(\mathrm{~g}) \mathrm{a}
$$

The reaction lost a substance so it shifted to counter act the stress
(consumed A and produced B) SHIFT \rightarrow

What if we added B ?

$\mathrm{A}(\mathrm{g}) \Leftrightarrow \mathrm{B}(\mathrm{g})$
 I. $100 \quad 0$
 C.
 Notice this reactions equilibrium
 E. $50 \quad 50$

What would happen to the reaction we Added B?

What is Le Chatelier's Principle

- Le Chatelier's Principle: Says that a reaction at equilibrium will shift against any stress that is applied.

We have already seen that if B is added the reaction will shift to consume it.

Or
If B is removed it will shift to produced more B
Important: K is temperature dependant.
WILL NOT CHANGE UNLESS TEMP CHANGES

Practice Problem

- Predict the direction of the reaction when H_{2} is removed from a mixture of the following.

If you are going to remove H_{2} then you will have to shift to Increase it. This will cause an increase in I_{2} and a decrease in HI

Increase/Decrease Pressure?

3 moles of gas 2 moles of gas

This shift will cause a drop in pressure

This shift will cause an increase in pressure

Practice

$$
2 \mathrm{~A}(\mathrm{~g})+\mathrm{B}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{C}(\mathrm{~g})
$$

If the reaction above is placed in a piston chamber and the pressure on the piston is increased causing the volume to decrease. How will the concentration of C be affected?

Practice Answer

$$
2 \mathrm{~A}(\mathrm{~g})+\mathrm{B}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{C}(\mathrm{~g})
$$

If the reaction above is placed in a piston chamber and the pressure on the piston is increased causing the volume to decrease. How will the concentration of C be affected?
The increased pressure will cause this reaction to shift to reduce the pressure. The products have less particles which is therefore less pressure.

Practice

$$
2 \mathrm{~A}(\mathrm{~g})+\mathrm{B}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{C}(\mathrm{~g})
$$

Gas A and B are in a rigid container. Gas D is added to the container doubling the pressure. Which way will the reaction shift?
Answer:
**They will not shift because the partial pressure of the gases did not change.
$\mathrm{PV}=\mathrm{nRT} \quad \mathrm{P}=\mathrm{nRT} / \mathrm{V} \quad$ Nothing changes
** D is also not a component in the reaction.

Add an inert substance?

- Anytime you add a substance that is not a specific part of the equation there will not be any shift of equilibrium.

What if we increase the Temperature?

- $1^{\text {st }}$ the equilibrium constant is temperature dependent (K) and can ONLY change if the temperature changes.
Exothermic
$A \Leftrightarrow B+$ Energy $(-\Delta H)$
Shift:
Endothermic
Energy $+A \Leftrightarrow B$

Increasing
temperature will
cause a shift
away from $(+\Delta \mathrm{H})$ energy.

Shift:

Practice

$A(g) \Leftrightarrow B(g)$

In the reaction above at 25C 1 mol of A produces .5 moles of B at equilibrium. At 50C 1 mol of a produces . 75 moles of B. Is the reaction exothermic or endothermic?

Practice answer

- As the temperature was increased the reaction shifted to the products.
- As you increase temperature the reaction will shift away from energy.
- Endothermic

$$
\text { Energy + } A \Leftrightarrow B
$$

Use a catalyst?

- A catalyst will NOT change the net affect on a reaction. It will only reach equilibrium faster.

