EQUILIBRIUM LECTURE 3 Le Chatelier's Principle

Schweitzer

Consider this reaction...

$$A(g) \Leftrightarrow B(g)$$

I. 100

O

Notice this reactions equilibrium

E. 50

 50

What would happen to the reaction we removed all of B?

The reaction lost a substance so it shifted to counter act the stress (consumed A and produced B) SHIFT →

What if we added B?

$$A(g) \Leftrightarrow B(g)$$

I. 100

O

Notice this reactions equilibrium

E. 50

 C

What would happen to the reaction we Added B?

What is Le Chatelier's Principle

 Le Chatelier's Principle: Says that a reaction at equilibrium will shift against any stress that is applied.

We have already seen that if B is added the reaction will shift to consume it.

Or

If B is removed it will shift to produced more B

Important: K is temperature dependant.
WILL NOT CHANGE UNLESS TEMP CHANGES

Practice Problem

Predict the direction of the reaction when H_{2 is} removed from a mixture of the following.

If you are going to remove H₂ then you will have to shift to Increase it. This will cause an increase in I₂ and a decrease in HI

Increase/Decrease Pressure?

This shift will cause a drop in pressure

This shift will cause an increase in pressure

Practice

$$2A(g) + B(g) \Leftrightarrow 2C(g)$$

If the reaction above is placed in a piston chamber and the pressure on the piston is increased causing the volume to decrease. How will the concentration of C be affected?

Practice Answer

$$2A(g) + B(g) \Leftrightarrow 2C(g)$$

If the reaction above is placed in a piston chamber and the pressure on the piston is increased causing the volume to decrease. How will the concentration of C be affected?

The increased pressure will cause this reaction to shift to reduce the pressure. The products have less particles which is therefore less pressure.

Practice

$$2A(g) + B(g) \Leftrightarrow 2C(g)$$

Gas A and B are in a rigid container. Gas D is added to the container doubling the pressure. Which way will the reaction shift?

Answer:

**They will not shift because the partial pressure of the gases did not change.

PV = nRT P = nRT/V Nothing changes

**D is also not a component in the reaction.

Add an inert substance?

 Anytime you add a substance that is not a specific part of the equation there will not be any shift of equilibrium.

What if we increase the Temperature?

 1st the equilibrium constant is temperature dependent (K) and can ONLY change if the temperature changes.

Exothermic

Practice

 $A(g) \Leftrightarrow B(g)$

In the reaction above at 25C 1 mol of A produces .5 moles of B at equilibrium. At 50C 1 mol of a produces .75 moles of B. Is the reaction exothermic or endothermic?

Practice answer

- As the temperature was increased the reaction shifted to the products.
- As you increase temperature the reaction will shift away from energy.
- Endothermic

Use a catalyst?

 A catalyst will NOT change the net affect on a reaction. It will only reach equilibrium faster.