Strong Acid vs. Strong Base Titration

Schweitzer

Strong Acid vs. Strong Base

- HCl vs. NaOH
$-\mathrm{HCl}+\mathrm{NaOH} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$
- $\mathrm{HCl}=$ Strong Acid
- $\mathrm{NaOH}=$ Strong Base
- $\mathrm{NaCl}=$ Neutral Salt
- $\mathrm{H}_{2} \mathrm{O}=$ neutral

Terms

- Equivalence point: When you have added an equal number of moles of acid and base.
- Neutralization point: When you have added enough solution to make the mixture neutral.

HCl vs. NaOH

Buret: NaOH 1.0 M

Zero added
Flask:

- HCl
- 1.0M
- 25 mL

Moles of HCl

- . 025 moles

HCl vs. NaOH

- What will be our equivalency point?
- HCl 1.0M
- 25 mL
-Vs.
- 1.0M NaOH
-?
- When 25 mL of NaOH is added we will have added equivalent moles.

HCl vs. NaOH

HCl vs. NaOH

Note: Indicator is Clear

HCl vs. NaOH

HCl vs. NaOH

Buret: NaOH

 1.0 M42ml Added
Moles of HCl

- . 025 moles
- Indicator:
- Phenolphthalein is red
- Solution is now basic?

HCl vs. NaOH

What is happening at the half equivalence point

- $\mathrm{HCl}+\mathrm{NaOH}=>\mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$
.025mols
- $1 / 2$ equivalence
- $\mathrm{HCl}+\mathrm{NaOH}=>\mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$
$.0125 \mathrm{mols} \quad .0125$ moles
- Note the volume is now
$25+12.5=37.5 \mathrm{~mL}$

What is happening at the equivalence point

- $\mathrm{HCl}+\mathrm{NaOH}=>\mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$
.025mols
- equivalence
- $\mathrm{HCl}+\mathrm{NaOH}=>\mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$
.025 moles
- Note the volume is now
$25+25=50 \mathrm{~mL}$

HCl vs. NaOH

- Will our equivalency point always be at pH of 7 ?
- At the equivalency point the original reactants are eliminated.
- The only thing present in the solution is the products. In this case a neutral salt and water.
- The pH of the salt determines the pH of the equivalency point.

HF vs. NaOH

Flask:

- HF
-1.0M
- 25 mL

Moles of HF

- . 025 moles

HF vs. NaOH

Flask:

- HF
-1.0M
- 25 mL

Moles of HF

- . 025 moles

HF vs. NaOH

Flask:

- HF
- 1.0M
- 25 mL

Moles of HF

- . 025 moles

HF vs. NaOH

Flask:

- HF
-1.0M
- 25 mL

Moles of HF

- . 025 moles

HF vs. NaOH

Flask:

- HF
-1.0M
- 25 mL

Moles of HF

- . 025 moles

HF vs. NaOH

Flask:

- HF
- 1.0M
- 25 mL

Moles of HF

- . 025 moles

What similarities or differences are there?

ETrition Lab-Microsof Interne Explorere provided by provided by- HasD

Same Volume of base needed to reach equivalence: 25 mL

Why did both solutions hit the equivalency point after 25 mL of base was added?

- Both acids, (HCl and HF) had the same volume and the same concentration. So they both contained the same number of Hydrogen ions. .025mol
- HCl being a strong acid just ionizes 100% giving up all the H^{+}'s immediately where as the HF only does so after repeated neutralization.

Why do they have different starting

 pH's- HCl is a stronger acid and will therefore produce H^{+}s at a larger rate then the HF.
- Even though they have the same number of Hydronium ions the rate at which the are produced is different.

What is happening at the half equivalence point

- $\mathrm{HF}+\mathrm{H}_{2} \mathrm{O}=>\mathrm{F}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$
.025mols
- $1 / 2$ equivalence
- $\mathrm{HF}+\mathrm{H}_{2} \mathrm{O}=>\mathrm{F}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$ $.0125 \mathrm{mols} \quad .0125$ moles
- Note the volume is now
$25+12.5=37.5 \mathrm{~mL}$
How would you calculate the pH at this point?

Calcualting pH at $1 / 2$ equiv.

- $\mathrm{HF}+\mathrm{H}_{2} \mathrm{O}=>\mathrm{F}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$

$\frac{.0125 \mathrm{mols}}{.0375 \mathrm{~L}}$.0125 moles	
	.0375 L		
I .33 M		.33 M	0
$\Delta-\mathrm{x}$		+x	+x
$\mathrm{E} .33-\mathrm{x}$	$.33+\mathrm{x}$	x	

$K \mathrm{Ka}=.33^{*} \mathrm{x} / .33$
$\mathrm{Ka}=\mathrm{x}$
NOTE: at $1 / 2$ equivalence $x=k a$ or $p h=p k a$

What is happening at the equivalence point

- $\mathrm{HF}+\mathrm{H}_{2} \mathrm{O}=>\mathrm{F}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$
.025mols
- equivalence
- $\mathrm{HF}+\mathrm{H}_{2} \mathrm{O} \Rightarrow \mathrm{F}^{-}+$
- Note the volume is now
$25+25=50 \mathrm{~mL}$
My concentrations of $\mathrm{F}-=.025 / .05 \mathrm{~L}=.5 \mathrm{M}$

How do you calculate the pH at the equivalence point????

- $\mathrm{HF}+\mathrm{H}_{2} \mathrm{O} \Rightarrow \mathrm{F}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$
- This is the acid hydrolysis but the acid is gone
- $\mathrm{F}^{-}+\mathrm{H}_{2} \mathrm{O} \Rightarrow \mathrm{HF}+\mathrm{OH}^{-}$

I .5M
Δ-x
E .5-x
0
0
$\mathrm{Kb}=\mathrm{x}^{2} / .5$
$-\log x=\mathrm{pOH} \quad 14-\mathrm{pOH}=\mathrm{pH}$

Polyprotic Titrations

- $\mathrm{H}^{+}+\mathrm{CO}_{3}{ }^{-2} \leftrightarrow \mathrm{HCO}_{3}^{-1}$
.025 mol
- $\mathrm{H}^{+}+\mathrm{HCO}_{3}^{-1} \leftrightarrow \mathrm{H}_{2} \mathrm{CO}_{3}$
- We would expect to see two equivalence points here
- $\mathrm{H}^{+}=\mathrm{CO}_{3}^{-2}$
- $\mathrm{H}^{+}=\mathrm{HCO}_{3}^{-}$

Polyprotic Titrations

- Since we have .025 moles of $\mathrm{CO}_{3}{ }^{-2}$ equivalence occurs when .025 moles of $\mathrm{H}+$ and .05 moles of H^{+}are added. This is equivalent to 25 ml and 50 mL

Polyprotic Titrations

- $\mathrm{H}^{+}+\mathrm{CO}_{3}{ }^{-2} \leftrightarrow \mathrm{HCO}_{3}^{-1}$
.025 mol
- $\mathrm{H}^{+}+\mathrm{HCO}_{3}^{-1} \leftrightarrow \mathrm{H}_{2} \mathrm{CO}_{3}$
- The Acid will fully protonate all of the $\mathrm{CO}_{3}{ }^{-2}$ before starting to add a second hydrogen ion to the $\mathrm{HCO}_{3}{ }^{-1}$

Titration of a polyprotic acid HCl vs. $\mathrm{CO}_{3}{ }^{-2}$

Titration of a polyprotic acid HCl vs. $\mathrm{CO} 3-2$

Filling Buret

```
resto Fill
```

it Titrating

kwith Sample

ith 25 mL of sample

```
npty Flask
```


Mode

Sample Molarity
M)
y of Sample
own

Titration of a polyprotic acid HCl vs. $\mathrm{CO} 3-2$

Indicators

USEFUL pH RANGES OF SELECTED INDICATORS

Practice

- A sample of Acetic acid (100mL, 0.15M) has a pH of 2.78
- Write the hydrolysis equation for acetic acid.
- Write the equilibrium expression.
- What is the Ka for the sample?
- What is the pH at the equivalence?
- What mass of NaOH is needed to reach half equivalence?

Practice

- Write the hydrolysis equation for acetic acid.
- Write the equilibrium expression.
- $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O}=>\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}$
- $\mathrm{Ka}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}\right] /\left[\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]$

What is the Ka for the sample?

What is the Ka for the sample?

- $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O}=>\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}$
- 1.15
- Δ-x
- E .15-x - x

0
$X=10^{-2.78}=.0016 \mathrm{M}$
$(.0016)^{2} / .15=1.77 \mathrm{E}-5$

What is the pH at the equivalence?

What is the pH at the equivalence

- $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O}=>\mathrm{H}_{3} \mathrm{O}^{+}+\underset{.15 \mathrm{C}^{2}}{\mathrm{C}_{2} \mathrm{O}_{2}^{-}}$

All reactant is converted to product.
What is the concentration of the product? If a liquid is added you must recalculate the concentrations

calculations

$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}+\mathrm{H}_{2} \mathrm{O}=>\mathrm{OH}^{-}+\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$
I . 15 - 0
$\begin{array}{llll}\Delta & -X \quad+X\end{array}$
E .15-x - x x
$\mathrm{Kb}=[\mathrm{OH}]\left[\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right] /\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}\right]$
Solve for x
(you will have had to solve for Kb as well $K \mathrm{Ka}^{*} \mathrm{~Kb}=\mathrm{Kw}$

What mass of NaOH is needed to reach half equivalence?

What mass of NaOH is needed

 to reach half equivalence?- Since we started with .015 moles of acid we will half of those converted over to the conjugate base.
$\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O}=>\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{-}$. 0075
. 0075
$1 \mathrm{OH}^{-}$can react with $1 \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$. So we need .015 moles of NaOH
$.0075 \mathrm{~mol} * 44 \mathrm{~g} / \mathrm{mol}=.33 \mathrm{~g}$

Practice \#2

Determining unknown molar mass an unknown solid acid.

- During a titration .500 grams of the solid acid was dissolved in 50 mL of water. The equivalence point was reached after 32.5 mL of .1 M NaOH was added.
- What is the molar mass of the unknown acid?

Determining unknown molar mass an unknown solid acid

- Molar mass = grams $/ \mathrm{mol}$
- Grams = . 500
- moles
$-\mathrm{M}=\mathrm{mol} / \mathrm{L} \quad .1=\mathrm{x} / .0325 \mathrm{~L} \quad \mathrm{x}=.00325$
$-.500 / .00325=153 . \mathrm{g} / \mathrm{mol}$

