\qquad Class \qquad Date \qquad

Section Review

Measuring Motion USING KEY TERMS

1. In your own words, write definitions for each of the following terms: motion and acceleration.
\qquad
2. Use each of the following terms in a separate sentence: speed and velocity.
\qquad
\qquad

UNDERSTANDING KEY IDEAS

\qquad 3. Which of the following is NOT an example of acceleration?
a. a person jogging at $3 \mathrm{~m} / \mathrm{s}$ along a winding path
b. a car stopping at a stop sign
c. a cheetah running $27 \mathrm{~m} / \mathrm{s}$ east
d. a plane taking off
\qquad 4. Which of the following would be a good reference point to describe the motion of a dog?
a. the ground
b. another dog running
c. a tree
d. All of the above
5. Explain the difference between speed and velocity.
6. What two things must you know to determine speed?
\qquad
\qquad
7. How are velocity and acceleration related?
\qquad
\qquad
\qquad Class \qquad Date \qquad
Section Review continued

MATH SKILLS

8. Find the average speed of a person who swims 105 m in 70 s . Show your work below.
9. What is the average acceleration of a subway train that speeds up from $9.6 \mathrm{~m} / \mathrm{s}$ to $12 \mathrm{~m} / \mathrm{s}$ in 0.8 s on a straight section of track? Show your work below.

CRITICAL THINKING

10. Applying Concepts Why is it more helpful to know a tornado's velocity rather than its speed?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad Class \qquad Date \qquad

Section Review continued
11. Evaluating Data A wolf is chasing a rabbit. Graph the wolf's motion using the following data: $15 \mathrm{~m} / \mathrm{s}$ at $0 \mathrm{~s}, 10 \mathrm{~m} / \mathrm{s}$ at $1 \mathrm{~s}, 5 \mathrm{~m} / \mathrm{s}$ at $2 \mathrm{~s}, 2.5 \mathrm{~m} / \mathrm{s}$ at $3 \mathrm{~s}, 1 \mathrm{~m} / \mathrm{s}$ at 4 s , and $0 \mathrm{~m} / \mathrm{s}$ at 5 s . What does the graph tell you?

\qquad
\qquad
\qquad
\qquad

