Name	Class	Date
Skills Worksheet		

Chapter Review

USING KEY TERMS

Complete each of the following sentences by choosing the correct term from the word bank.

	free fall terminal velocity	projectile motion momentum	inertia
1. An	object in motion has		, so it tends to stay in
mo	otion.		
2. An	object is falling at its_		if it falls at a constant
vel	ocity.		
3		_ is the path that a thi	rown object follows.
4		_ is a property of mov	ving objects that depends on
ma	ss and velocity.		
5		_ occurs only when a	ir resistance does not affect the
mo	otion of a falling object.		
HNDE	RSTANDING KEY IDE	AC	
	le Choice	AS	
	6. When a soccer ball cancel each other of a. the forces are not b. the forces act on c. the forces act at d. All of the above	out because of equal in size. different objects. different times.	and reaction forces do not
	7. An object is in proj a. is thrown with a b. is accelerated do c. does not accelera d. All of the above	horizontal push. ownward by gravity. ate horizontally.	
	8. Newton's first lawa. moving objects.b. objects that are respectively.		

c. objects that are accelerating.

d. Both (a) and (b)

Name	Class	Date	
Chapter Review con	tinued		
object that a. smaller t b. larger th c. the same	has more mass should be than the force used to push that the force used to push the as the force used to push the the object's weight.	the object that has less mass e object that has less mass	SS.
of the two l a. The golf b. The bow c. They havelocity.	and a bowling ball are move has more momentum? I ball has more momentum bely ling ball has more moment we the same momentum become.	pecause it has less mass. um because it has more ma cause they have the same	
Short Answer			
12. Describe how grav velocity.	vity and air resistance are re	lated to an object's terminate	al
13. Why can friction r	nake observing Newton's fi	rst law of motion difficult	?
a. Without conside	from rest off a cliff and hits ering air resistance, what is Show your work below.		fore it
b. What is the rock work below	x's momentum just before it	hits the ground? Show yo	our

Name	_ Class	_Date
Objection Decision (1)		
Chapter Review continued		

CRITICAL THINKING

15. **Concept Mapping** Use the following terms to create a concept map: *gravity, free fall, terminal velocity, projectile motion,* and *air resistance.*

Name	Class	Date	
Chapter Review continue	ed		
16. Identifying Relationshi fuel is burned in 8 min forward force. How do shuttle's acceleration i	. The fuel provides the Newton's second	he shuttle with a consta law of motion explain	ant thrust, or
17. Analyzing Processes V have to swing the ham hammer has both mass to the hammer's mome	mer through the air v and velocity, it has	vith a certain velocity. momentum. Describe v	Because the
18. Applying Concepts Surskates and you toss a bedo you think will happ third law of motion.	ackpack full of heav	y books toward your fr	riend. What

Name	Class	Date	
Chapter Review continued			

INTERPRETING GRAPHICS

19. The picture below shows a common desk toy. If you pull one ball up and release it, it hits the balls at the bottom and comes to a stop. In the same instant, the ball on the other side swings up and repeats the cycle. How does conservation of momentum explain how this toy works?

-			
-	 	 	 _