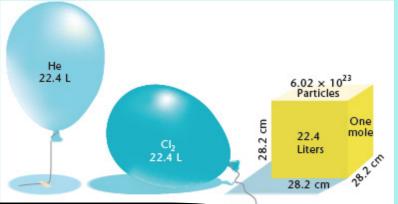

PVnRT.notebook March 24, 2015

Ideal Gas Law



PVnRT.notebook March 24, 2015

How is R determined?

1 mol = 22.9L at STP

At STP, 1 mol of gas takes up 22.4 L

STP stands for

Standard Temperature and Pressure

 $= 0^{\circ}$ C = 273K

- 1 atm

=760 mmHg

solve for R

=760 torr

$$R = \frac{PV}{nT} = \frac{1 \text{ atm} (22.4L)}{1 \text{ mol} (273K)} = 0.0821 \frac{\text{atm} \cdot L}{\text{mol} \cdot K}$$

$$R=0.0821 \frac{atm \cdot L}{mol \cdot K}$$

must have these units to use this constant!

PVnRT.notebook March 24, 2015

Which Equation to Use?

look at variables

$$\begin{array}{ccc} \underline{V_1}P_1 &=& \underline{V_2}P_2 \\ \overline{T_1} && \overline{T_2} \end{array}$$

this one has a "before" and "after"

this one has "n" as number of moles

If I have an unknown quantity of H₂ gas at a pressure of 1.2 atm a volume of 31 liters, and a temperature of 87 °C, how many moles of gas do I have? How many grams is this?

P=1.2 atm

$$T = 87^{\circ}C + 273 = 360 \text{ K}$$

$$n = ?$$

$$R = 0.0821 \frac{atm \cdot L}{mol \cdot K}$$

$$n = PV = (1.2 \text{ atm})(31 \text{ L}) = 1.26 \text{ mol H}_2$$

RT $(0.08216)(360\text{ L})$

How many grams?

molar mass of $H_2 = 2$ g/mol