Why is a liquid a liquid?

What factors affect change in state of a liquid?
Internal and external factors
Vapor Pressure
Triple phase diagrams
https://www.youtube.com/watch?v=im7DzMr8Ygs

Vapor Pressure

The pressure exerted by the gas in equilibrium with a solid or liquid in a closed container at a given temperature.

Evaporation changes with pressure and temperature:

External factors

There are two ways to boil water.

1. Raise the water's Vapor pressure above the atmospheres pressure. (Vapor pressure > Atmospheric pressure.)
2. Find a way to lower the atmospheric pressure Heating Curve

decrease atm $\mathrm{V}_{\mathrm{p}}>\operatorname{Atm} \mathrm{P}$

- 2007 Thamson Hibter Education
elevation vs pressure

Consider temperature and pressure at the same time:

Use a
Phase Diagram:

What happens when you cross a "line" into a different phase?
triple point --all 3 phases exist at one temp and pressure critical point:temperature is so high liquid can no longer be sustained

Increasing temperature pushes a substance toward being a gas.

Increasing the atmospheric pressure pushes

or compresses the substance more toward being a solid.

Consider temperature and pressure at the same time:

Use a
Phase Diagram:

At 1 atm of pressure, what is the melting and freezing point?
What is the approximate melting and freezing point at 0.5 atm ?
What phase change occurs if the sample starts at $50^{\circ} \mathrm{C}$ and 0.75 atm and the pressure is dropped to 0.25 atm ?

What phase change occurs if the sample starts at $50^{\circ} \mathrm{C}$ and 0.75 atm and the pressure is dropped to 0.25 atm ?

Vapor pressure varies with temperature

Vapor pressure varies with substance

substance	vapor pressure at $\mathbf{2 5}^{\circ} \mathbf{C}$
diethyl ether	0.7 atm
bromine	0.3 atm
ethyl alcohol	0.08 atm
water	0.03 atm

Factors that affect vapor pressure:

type of molecule

\downarrow
intermolecular forces:

- if strong: VP low

polar
will have H bonds
more intermolecular bonds
- if weak: VP high
diethyl ether

nonpolar less intermolecular bonds

temperature 1
if high, more molecules have enough energy to escape the liquid

Maxwell-Boltzmann distribution of velocities

Mole Fraction $=\frac{\text { moles of } X}{\text { Total moles }}$

If you mix $39.0 \mathrm{~g} \mathrm{NH}_{4} \mathrm{NO}_{3}$ in 200 mL of water, what is the mole fraction of water?
mole fraction of water:

$$
\begin{aligned}
& 39.0 \mathrm{~g} \mathrm{NH}_{4} \mathrm{NO}_{3} \\
& \hline
\end{aligned} \left\lvert\, \begin{array}{l|l}
1 \mathrm{~mol} \\
\hline
\end{array}=0.49 \mathrm{gol} \mathrm{NH}_{4} \mathrm{NO}_{3} \mathrm{~g}\right., 11.1 \mathrm{~mol} \mathrm{H} \mathrm{O}
$$

Raolt's Law

The partial vapour pressure of a component in a mixture
is equal to the vapour pressure of the pure component at that temperature multiplied by its mole fraction in the mixture.

We can use this when we mix a non-volitile salt in water:

Vapor pressure $=\mathrm{X}_{\mathrm{x}} \mathrm{V}_{\mathrm{x}}$
mole fraction

mole fraction:

$39.0 \mathrm{~g} \mathrm{NH}_{4} \mathrm{NO}_{3}$	1 mol
	80 g

$200 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$	1 mol
	18 g

$$
\mathrm{X}_{\mathrm{H}_{2} \mathrm{O}}=\frac{11.1}{11.1+0.49}=0.96
$$

$$
P_{\text {vap }}=(0.96)(23.76)=22.8 \mathrm{mmHg}
$$

