

Which Equation to Use?

look at variables

$$\begin{array}{ccc} \underline{V_1}\underline{P_1} &=& \underline{V_2}\underline{P_2} \\ \overline{T_1} && \overline{T_2} \end{array}$$

this one has a "before" and "after"

this one has "n" as number of moles

If I have an unknown quantity of H₂ gas at a pressure of 1.2 atm a volume of 31 liters, and a temperature of 87 °C, how many moles of gas do I have? How many grams is this?

$$T = 87^{\circ}C + 273 = 360 \text{ K}$$

$$n = ?$$

$$R = 0.0821 \frac{\text{atm} \cdot \text{L}}{\text{mol} \cdot \text{K}}$$

PV=nRT solve for n
$$\frac{PV}{RT} = \frac{nRT}{RT}$$

$$n = PV = (1.2 \text{ atm})(31 \text{ L}) = 1.26 \text{ mol H}_2$$

RT $(0.0821)(360\text{ K})$

How many grams?

molar mass of $H_2 = g/mol$

$$\frac{1.26 \text{ mol H}_2}{1 \text{ mol}} = 2.52 \text{ g H}_2$$

1. Determine the number of moles present in a red balloon that has a volume of 1.5L at STP

T=273 K
P= 1 atm
V=1.5 L

$$n = 7$$

R= 0.0821 $\frac{\text{atm} \cdot L}{\text{mol} \cdot K}$
 $n = 0.0621$ $\frac{\text{con}}{\text{mol} \cdot K}$ $n = 0.06$ $\frac{\text{con}}{\text{con}}$

2. What is the temperature of a sample of air that has a pressure of 1.5 atm, moles = .05 and a volume of 1.1 L.

P= 1.5 atm
n= 0.05 mol
V= 1.1 L
P= 0.0821 atmic

$$T = \frac{PV}{NR} = \frac{(1.5 \text{ atm})(1.15)}{(0.0821 \text{ mol})(0.0821 \text{ mol})}$$

$$T = \frac{402}{NR}$$

3. If a balloon has a temperature of 298K and a volume of 1.98L, what is the pressure if the balloon contains 1 mole of gas?

P?
$$PV = nRT = (|mo|)(0.0821)$$

T= 298 K
V= 1.98 L
n= 1 mol

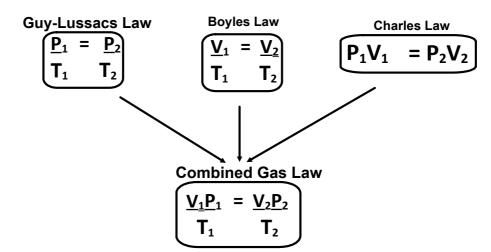
 $P = |2.4 \text{ a fm}$
 $P = |2.4 \text{ a fm}$

1. What is the difference between an Ideal gas and a non-ideal gas?

Ideal gas: (good estimation) we assume gas particles

- -travel fast
- -very far apart
- -collisions are elastic
- -no attractions or repulsions

non ideal gas:


real gases have slightly different parameters and we would have slight differences in values

2. What is the combined gas law?

$$\begin{array}{ccc}
\underline{V_1 P_1} &=& \underline{V_2 P_2} \\
T_1 & T_2
\end{array}$$

T must be in Kelvin scale

3. The combined gas law is simply the combination the these three gas laws?

4. What is the ideal gas law?

T must be in Kelvin scale

5. A flask contains $O_{2(g)}$, first at <u>STP</u> and then at <u>100°C</u>. What is the pressure at 100°C.

$$T_1$$
= 273K
 P_1 =1 atm
 T_2 = 100°C + 273K = 373 K
 P_2 = ?

$$P_2 = 1.37 \text{ atm}$$

1. What are the units on R? <u>atm • L</u>

Reare the units on R?
$$\frac{\text{attr} \ \text{E}}{\text{mol} \cdot \text{K}}$$

2. A sample of He gas has at STP has a volume of 5 L. How many moles are present?

(1 atm) (5 L)= n (0.0821) (273K)

$$f V = n R T$$

n = 0.22 mol He

3. A balloon of Nitrogen gas at STP has a volume of 5 L. How many moles are present?

same as above-- the kind of gas does not matter (assuming ideal gas)

4. If a balloon has at STP contains 10 moles of He what is the volume?

5. What is the mass of helium in the previous problem?

6. A balloon contains 1 gram of nitrogen at STP. What is the volume?

$$(1 \text{ atm}) V = (0.036 \text{ mol}) (0.0821) (273K)$$

$$V = 0.81 L$$

4.A sample of hydrogen gas has a volume of 8.56L at a temperature of $0^{\circ}C$ and a pressure of 1.5 atm. Calculate the moles of H_2 molecules present in this gas sample.

V= 8.56L
$$PV=nRT$$

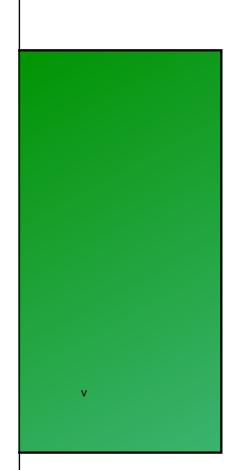
T= 0°C + 273K = 273K
P = 1.5 atm (1.5 atm)(8.56L) = n (0.0821) (273K)
n= 0.58 mol

5.Suppose we have a sample of ammonia gas with a volume of 3.5 L at a pressure of 1.68 atm. The gas is compressed to a volume of 1.35L at a constant temperature. Which gas law will be used in this example and what is the final pressure?

$$V_1=3.5 L$$
 $P_1V_1=P_2V_2$
 $P_1=1.68 \text{ atm}$
 $V_2=1.35L$
 $(1.68 \text{ atm})(3.5 L) = P_2 (1.35L)$
 $(1.68 \text{ atm})(3.5 L) = P_3 (1.35L)$

 $P_2 = 4.35 \text{ atm}$

6.A 5 g sample of Methane (CH₄) gas that has a volume of 3.8 L at 5° C is heated to 86°C at constant pressure of 2 atm. Calculate its new volume.


V= 3.8 L

$$T_1 = 5^{\circ} C + 273 = 278K$$

 $T_2 = 86^{\circ} C + 273 = 359K$

$$\frac{V_1}{T_1} = \frac{V_2}{T_2}$$

$$\frac{3.8 L}{278K} = \frac{V_2}{359K}$$

 $V_2 = 4.91 L$

15 constant