Percent Composition And a scientific weight loss program Schweitzer

Percent composition

- If a human weighs 200 pounds, what is actually contributing to that mass.
- In other words how much of that 200 lbs is due to
 - Muscle
 - Fat
 - Bone
 - Fluids
 - Ect

How does a person actually lose weight?

• When you run and you lose weight(mass). How did you actually lose mass?

- Sweating?
 - Yes, you will lose water but you will need to replace that to stay healthy and up right. So no real net loss.
- Breathing?
 - Yes, you actually breath out CO_2 which is heavier then the O_2 you breath in.

Percent Composition

- Every person Breaths in oxygen and breaths out carbon dioxide (CO₂) If a person breaths out 50 grams of CO₂ how much of that mass is due to C and how much is due to O.
- To solve this problem we are going to determine the percent by mass of CO₂

Important: This percentage is not specific to the sample size. A 10g sample will have the same ratio of C to O as a 1000g sample.

Calculating percent composition

% mass = Mass X / total mass * 100

- CO_{2}
- Sample size = 1 mole
- C = 12 g O = 2 * 16 = 32g
- Total mass 1 mole = 44g
- C = 12/44 * 100 = 27.2%
 O = 32/44 * 100 = 72.7%

Any sample of CO_2 will have this same composition regardless of sample size!!!

Determining mass of a sample

- Once again a person breaths out 50 grams of carbon dioxide. How much actual mass of carbon was lost.
- 50g * .272 = 13.6g

C = 12/44 * 100 = 27.2% O = 32/44 * 100 = 72.7%

- The rest of the mass is due to Oxygen which the person breathed in anyway.
- So this person breathed in 36.4g of O₂ and breathed out 36.4g O₂ and 13.6g of C² in the form of CO₂.

Mr. Schweitzer's weight lose plan!

- Mr. Schweitzer wants to lose 10% of his body weight (230lbs).
 - 23lbs or 10.45kg or 10,454g is the amount that needs to be lost! Ouch... That is a lot of CO_2
 - How would I figure out how much CO₂ I would have to breath out?
 - Ratios are a common way to solve problems like this!

How to use a ratio!

•Cross multiply and divide

Mr. Schweitzer will have to breath out 38433 grams of CO_2 .

Lets apply this concept to an AP Question.

 Which of these alkaline earth metal oxides has the greatest percent by mass oxygen?

a. barium oxide

- b.beryllium oxide
- c. calcium oxide
- d.magnesium oxide
- e.strontium oxide

Typical Questions

- Which of these alkaline earth metal oxides has the greatest percent by mass oxygen?
- a. barium oxide BaO b.beryllium oxide BeO All of this have 16 c. calcium oxide CaO g of O, who has the least mass from the metal? d.magnesium oxide MgO e.strontium oxide SrO Did you notice the metal all came from the same

family(alkaline earth)

Typical Question

- Which oxides of manganese, Mn, have percent by mass of manganese that is greater than 50%.
- I.MnO
- II.MnO₂
- III. Mn₂O₃
- a. II d. II and III
- b. III e. I, II, III
- c. I and III

Typical Question

- Which oxides of manganese, Mn, have percent by mass of manganese that is greater than 50%.
- I.MnO (54, 16 = Yes)
- II.MnO₂ (108, 32 = yes)
- III. Mn₂O₃ (108, 48 = Yes)
- a. II d. II and III
- b. III e. I, II, III
- c. I and III

Percent Mass = Formula

- Key Notes
 - We are going to take the composition and convert back to a formula
 - The composition is not determined by the size of the sample. Much like the Freezing point of water is not determined by the sample size.
 - Example
 - A white powder is analyzed and found to contain 43.64% phosphorus and 56.36% oxygen by mass.

- $P_{2}O_{2}$ What are the ?'s.

Lets reflect on this question?

- Q: A white powder is analyzed and found to contain 43.64% phosphorus and 56.36% oxygen by mass.
- 1. Set a sample size. This does not matter. (100g is easiest)
- 2. Determine the mass of each element in the sample $D_1 = 42.64\pi$

P: 43.64g O: 56.36g

- 3. Convert to moles. This will give number of individuals!
 - -- 43.64/30.97 = 1.409 moles 56.36/16. = 3.523 moles
- 4. Simplify: Set smallest to 1 by dividing
 1.409/1.409 = 1 P
 3.523/1.409 = 2.5 or 2¹/₂
- 5. Multiply by reciprocal of fraction to remove

$$1 * 2 = 2P$$
 $2\frac{1}{2} * 2 = 5$ P_2O_5

Where and how will you see this concept?

- Multiple choice: This concept is rarely given in this manner.
- Free response: It is seen quite frequently in an open written type of question just like the previous example.