Name Rate Constants/ Determination of Rates

1.(Brady580) What is the rate of the reaction below at 0C when the reactant concentrations are the following: $[H_2SeO_3] = 2.0E-2M$, $[I^-] = 2.0E-3M$, $[H^+] = 1.0E-3M$? $H_2SeO_3 + 6I^- + 4H^+ \rightarrow Se + 2I_3^- + 3 H_2O$ Rate = $k[H_2SeO_3][I^-]^3[H^+]^2$ k = 5.0E5 L/mol s

2. (Brady584) Sulfuryl Chloride, SO₂Cl₂, is used to manufacture the antiseptic Chlorophenol. The following data were collected on the decomposition of SO₂Cl₂, at a constant temperature. The experiment is tracking the production of SO₂ production. Determine rate equation, rate constant, and the units for the rate constant.

$$SO_2Cl_{2(g)} \rightarrow SO_{2(g)} + Cl_{2(g)}$$

SO ₂ Cl ₂ M	SO ₂ M/s
0.100	2.2E-6
0.200	4.4E-6
0.300	6.6E-6

3. (Brady585) The following data was measured for the reduction of nitric oxide with hydrogen. Determine the rate law of the reaction.

$$2NO(g) + 2H_2(g) \rightarrow N_2(g) + 2H_2O(g)$$

Experiment	[NO]	$[H_2]$	Rate of formation of H ₂ O
1	0.10	0.10\ _V	1.23E-3Mol/L s 2\
2	0.10	0.20	2.46 E-3 mol/L s 💆 🕽 🧝 🗸
3	0.20	0.10	4.92E -3 mol/L s

4. (Kotz698) The rate of the reaction between CO and NO₂ (CO + NO₂ → CO₂ + NO) was studied at 540K starting with various concentrations of CO and NO₂ and Data in the table were collected. Determine the rate equation from these data. What is the value of the rate constant?

Experiment	[CO] M	$[NO_2]M$	Initial rate mol/L h
1	5.10E-4	0.350E-4	3.4E-8
2	5.10E-4	0.700E-4	6.8E-8
3	5.10E-4	0.185E-4	1.7E-8
4	1.02E-3	0.350E-4	6.8E-8
5	1.53E-3	0.350E-4	10.2E-8