Introduction to Stoichiometry

Objectives: Introduction to concepts of stoichiometry.
-How we use the coefficients
-How to determine the limiting reactant

- How mass figures into stoichiometry
-How to determine products and un-used material
-Typical Multiple choice questions

Get a visual of stoichiometry

- Link... Notice the following
- the stoichiometric ratio
- how they combine in whole number ratios.
- There are a lot more H_{2} molecules but less mass
- Chemicals combine based upon the stoich ratio and that has NOTHING to do with their mass.
- Notice all the mass is conserved!
- We will use mass only as a means to COUNT!

How we use the coefficients

$$
2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}
$$

- Notice: Through balancing the chemical H_{2} and O_{2} are used at a 2:1 ratio.
- Excess reactant (reagent): Based on the ratio consumed there was unused chemical leftover when another chemical was completely consumed.
- Limiting reactant(reagent): Reactant completely used stopping the reaction. This substance determines (controls) production.

How to determine the limiting reactant

- How do we know which reactant will be consumed $1^{\text {st }}$ stopping the reaction?
- 2 factors
- 1: Physical quantity
- 2: Rate used (coefficient)

Example 1

$$
\begin{aligned}
& 2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O} \\
& 5 \text { moles of each reactant }
\end{aligned}
$$

Q: Which will run out $1^{\text {st }}$?
A: Since they each have the same quantity and the H_{2} is being used up twice as fast the H is the LR.

Example 2

$$
\mathrm{Mg}+\mathrm{S} \rightarrow \mathrm{MgS}
$$

Mg : 5 moles
$\mathrm{S}: 10$ moles
Q: What is the LR in this problem.
A: Notice they are being consumed at the same rate. Therefore since the S is in higher quantity the Mg will run out stopping the reaction.

Think it over...

- Obviously if a substance has less quantity and at a faster rate it has to be the limiting reactant.

$$
\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

$\mathrm{CH}_{4} .75$ moles
$\mathrm{O}_{2}: 1.0$ moles
Q: What is the limiting reactant?
A: This is a little more difficult. See next slide.

Answer

In this slide we run CH_{4} to 0

$$
\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

Initial . 751.0
Change -. 75 -1.5

Note: This is not realistic because the O_{2} went negative. In order to consume the CH_{4} we would need another .5 moles of O_{2}.
-- Let try this making O_{2} the limiting reactant.

Answer

$$
\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

Initi
Chan
End
.751 .0
0
0
\leftarrow moles
Change
-. 5 -1.0
+. 5
$.1 \leqslant \mathrm{CH}_{4}$ LR
.15
0
. 5 . 1

Note: O_{2} is the LR. A table like this works great to see what is going on. It ONLY works with moles and gases. NOT with grams!

Common Problem

- Methanol, a common fuel used for race cars is the simplest alcohol.

$$
\mathrm{C}-\mathrm{OH}
$$

- Even though the actual formula is $\mathrm{CH}_{3} \mathrm{OH}$ it is common to leave off the H atoms.

$$
2 \mathrm{CH}_{3} \mathrm{OH}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}
$$

Lets burn it!

$$
\begin{gathered}
\begin{array}{c}
32 \mathrm{~g} / \mathrm{mol} \\
2 \mathrm{CH}_{3} \mathrm{OH} \\
25 \mathrm{~g}
\end{array}+32 \mathrm{~g} / \mathrm{mol} \\
30 \mathrm{~g}
\end{gathered} \underset{\substack{\text { Liters? } \\
\text { @STP }}}{2 \mathrm{CO}_{2(\mathrm{~g})}}+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \text { Molecules? }
$$

- Determine molar masses of each.
- Determine the limiting reactant.
- Determine the products.

Let set up a chart

\[

\]

$\frac{\text { Math }}{.93 \mathrm{O}_{2}} *(2 / 3)=.625$ moles
$.93 \mathrm{O}_{2} *(4 / 3)=1.24$ moles

Liters of CO_{2}

- $\mathrm{PV}=\mathrm{nRT}$
$-\mathrm{P}=$ pressure (atm)
$-\mathrm{V}=$ Volume (L)
$-\mathrm{n}=$ moles

$$
\begin{aligned}
& \mathrm{PV}=\mathrm{nRT} \\
& \mathrm{~V}=\mathrm{nRT} / \mathrm{P} \\
& \mathrm{~V}=.625 * .0821 * 273 / 1 \\
& \mathrm{~V}=14.0 \mathrm{~L}
\end{aligned}
$$

$-\mathrm{R}=.0821$
$-\mathrm{T}=$ Temperature (K)

- STP is a common set of conditions
-1 atm (760 mmHg) Temp. $=273 \mathrm{~K}$

Molecules of $\mathrm{H}_{2} \mathrm{O}$

- 1.24 moles $\mathrm{H}_{2} \mathrm{O}$ Convert to molecules.
- 1.24 * 6.022E $23=7.46 \mathrm{E} 23$
- Alternate Question:
- How many atoms of hydrogen are present in the water?
- There are 2 H atoms in each water molecule
- 2:1 ratio
- 7.46E23 * 2 = 1.49E24 atoms

Percent yield

- Theoretical yield : 14.0 L of Carbon dioxide.
- When the experiment was actually ran we only received 10.5 L (Actual yield).
- Percent Yield = Actual/Theoretical * 100
- 10.5/14.0 * 100 = 75\%

Typical Multiple Choice Problem

- $2 \mathrm{KClO}_{3} \rightarrow 2 \mathrm{KCl}+3 \mathrm{O}_{2}$
- Which expression gives the mass of O_{2} produced when $15 \mathrm{~g} \mathrm{KClO}_{3}$ is heated, according to the equation above, in an open vessel until no further weight loss is observed

```
a. }15.0\times(122.5/1)\times(2/3)\times(31/1
b. }15.0\times(1/122.5)\times(3/2)\times(32/1
c. }15.0\times(1/122.5)\times(3/2)\times(1/32
d. 15.0\times(1/122.5) x (2/3) \times (1/32)
e. }15.0\times(122.5/1)\times(3/2)\times(32/1
```


Typical Problem

- $2 \mathrm{KClO}_{3} \rightarrow 2 \mathrm{KCl}+3 \mathrm{O}_{2}$
- Which expression gives the mass of O_{2} produced when $15 \mathrm{~g} \mathrm{KClO}_{3}$ is heated, according to the equation above, in an open vessel until no further weight loss is observed
a. $15.0 \times(122.5 / 1) \times(2 / 3) \times(31 / 1)$
b. $15.0 \times(1 / 122.5) \times(3 / 2) \times(32 / 1)$
c. $15.0 \times(1 / 122.5) \times(3 / 2) \times(1 / 32)$
d. $15.0 \times(1 / 122.5) \times(2 / 3) \times(1 / 32)$
e. $15.0 \times(122.5 / 1) \times(3 / 2) \times(32 / 1)$

Start eliminating. $1^{\text {st }}$ you must divide to get into moles.

Typical Problem

- $2 \mathrm{KClO}_{3} \rightarrow 2 \mathrm{KCl}+3 \mathrm{O}_{2}$
- Which expression gives the mass of O_{2} produced when $15 \mathrm{~g} \mathrm{KClO}_{3}$ is heated, according to the equation above, in an open vessel until no further weight loss is observed
a. $15.0 \times(122.5 / 1) \times(2 / 3) \times(31 / 1)$
b. $15.0 \times(1 / 122.5) \times(3 / 2) \times(32 / 1)$
c. $15.0 \times(1 / 122.5) \times(3 / 2) \times(1 / 32)$
d. $15.0 \times(1 / 122.5) \times(2 / 3) \times(1 / 32)$
e. $15.0 \times(122.5 / 1) \times(3 / 2) \times(32 / 1)$
$2^{\text {nd }}$ you must mulitiply to get back to grams!

Typical Question

- Which pair of samples contains the same number of oxygen atoms in each compound?
- (Last Modified 5-13-04)
- a. $0.10 \mathrm{~mol} \mathrm{Al}_{2} \mathrm{O}_{3}$ and 0.50 mol BaO
- b. 0.20 mol Cl 2 O and 0.10 mol HClO
- c. 0.20 mol SnO and 0.20 mol SnO 2
- d. 0.10 mol Na 2 O and $0.10 \mathrm{~mol} \mathrm{Na} \mathrm{SO}_{4}$
- e. $0.20 \mathrm{~mol} \mathrm{Ca}(\mathrm{OH})_{2}$ and $0.10 \mathrm{~mol} \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$

