Introduction to Stoichiometry

Objectives: Introduction to concepts of stoichiometry.

- •How we use the coefficients
- •How to determine the limiting reactant
- •How mass figures into stoichiometry
- •How to determine products and un-used material
- •Typical Multiple choice questions

Get a visual of stoichiometry

- <u>Link...</u> Notice the following
- the stoichiometric ratio
- how they combine in whole number ratios.
- There are a lot more H₂ molecules but less mass
- Chemicals combine based upon the stoich ratio and that has NOTHING to do with their mass.
- Notice all the mass is conserved!
- We will use mass only as a means to COUNT!

How we use the coefficients $2H_2 + O_2 \rightarrow 2H_2O$

- Notice: Through balancing the chemical H_2 and O_2 are used at a 2:1 ratio.
- Excess reactant (reagent): Based on the ratio consumed there was unused chemical leftover when another chemical was completely consumed.
- Limiting reactant(reagent): Reactant completely used stopping the reaction. This substance determines (controls) production.

How to determine the limiting reactant

- How do we know which reactant will be consumed 1st stopping the reaction?
- 2 factors
 - 1: Physical quantity
 - 2: Rate used (coefficient)

Example 1

 $2H_2 + O_2 \rightarrow 2H_2O$ 5 moles of each reactant

Q: Which will run out 1st?

A: Since they each have the same quantity and the H_2 is being used up twice as fast the H is the LR.

Example 2

- Mg + S \rightarrow MgS
- Mg: 5 moles
- S: 10 moles
- Q: What is the LR in this problem.

A: Notice they are being consumed at the same rate. Therefore since the S is in higher quantity the Mg will run out stopping the reaction.

Think it over...

 Obviously if a substance has less quantity and at a faster rate it has to be the limiting reactant.

$$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O_2$$

- CH_{4:} .75 moles
- O_{2:} 1.0 moles
- Q: What is the limiting reactant?
- A: This is a little more difficult. See next slide.

Answer

- In this slide we run CH_4 to 0 $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$ Initial .75 1.0 \leftarrow moles Change -.75 -1.5 \leftarrow CH_4 LR End 0 -.5
- Note: This is not realistic because the O₂ went negative. In order to consume the CH₄ we would need another .5 moles of O₂.
- -- Let try this making O₂ the limiting reactant.

Answer

Note: O₂ is the LR. A table like this works great to see what is going on. It ONLY works with moles and gases. NOT with grams!

Common Problem

- Methanol, a common fuel used for race cars is the simplest alcohol.
 C-OH
- Even though the actual formula is CH_3OH it is common to leave off the H atoms.

$$2CH_3OH + 3O_2 \rightarrow 2CO_2 + 4H_2O$$

Lets burn it!

- Determine the limiting reactant.
- Determine the products.

Let set up a chart

	2CH ₃ OH	$+ 30_2 -$	→ 2CO _{2 (g)}) + 4H ₂ O(g)
I	.78	.93		
С	625	93	+.625	1.24 moles
E	.155	0	.625	1.24

<u>Math</u> .93 $O_2 * (2/3) = .625$ moles .93 $O_2 * (4/3) = 1.24$ moles

Liters of CO₂

- PV = nRT
 - P = pressure (atm)
 - -V = Volume (L)
 - -n = moles
 - -R = .0821
 - T = Temperature (K)
- STP is a common set of conditions
 - 1 atm (760mmHg) Temp. = 273K

PV = nRT V = nRT/P V = .625 * .0821 * 273/1 V = 14.0L

Molecules of H₂O

- 1.24 moles H₂O Convert to molecules.
- 1.24 * 6.022E 23 = 7.46E23
- Alternate Question:
- How many atoms of hydrogen are present in the water?
- There are 2 H atoms in each water molecule
- 2:1 ratio
- 7.46E23 * 2 = 1.49E24 atoms

Percent yield

- Theoretical yield : 14.0 L of Carbon dioxide.
- When the experiment was actually ran we only received 10.5 L(Actual yield).

- Percent Yield = Actual/Theoretical * 100
- 10.5/14.0 * 100 = 75%

Typical Multiple Choice Problem

- $2KCIO_3 \rightarrow 2KCI + 3O_2$
- Which expression gives the mass of O₂ produced when 15g KClO₃ is heated, according to the equation above, in an open vessel until no further weight loss is observed
- a. 15.0 x (122.5/1) x (2/3) x (31/1)
- b. 15.0 x (1/122.5) x (3/2) x (32/1)
- c. 15.0 x (1/122.5) x (3/2) x (1/32)
- d. 15.0 x (1/122.5) x (2/3) x (1/32)
- e. 15.0 x (122.5/1) x (3/2) x (32/1)

Typical Problem

- $2KCIO_3 \rightarrow 2KCI + 3O_2$
- Which expression gives the mass of O₂ produced when 15g KClO₃ is heated, according to the equation above, in an open vessel until no further weight loss is observed
- a. 15.0 x (122.5/1) x (2/3) x (31/1)
- b. 15.0 x (1/122.5) x (3/2) x (32/1)
- c. 15.0 x (1/122.5) x (3/2) x (1/32)
- d. 15.0 x (1/122.5) x (2/3) x (1/32)
 e. 15.0 x (122.5/1) x (3/2) x (32/1)

Start eliminating. 1st you must divide to get into moles.

Typical Problem

- $2KCIO_3 \rightarrow 2KCI + 3O_2$
- Which expression gives the mass of O₂ produced when 15g KClO₃ is heated, according to the equation above, in an open vessel until no further weight loss is observed
- a. 15.0 x (122.5/1) x (2/3) x (31/1)
- b. 15.0 x (1/122.5) x (3/2) x (32/1)
- c. <u>15.0 x (1/122.5) x (3/2) x (1/32</u>)
- d. 15.0 x (1/122.5) x (2/3) x (1/32) e. 15.0 x (122.5/1) x (3/2) x (32/1)

2nd you must mulitiply to get back to grams!

Typical Question

- Which pair of samples contains the same number of oxygen atoms in each compound?
- (Last Modified 5-13-04)
- a. $0.10 \text{ mol Al}_2\text{O}_3 \text{ and } 0.50 \text{ mol BaO}$
- b. 0.20 mol Cl_2O and 0.10 mol HClO
- c. 0.20 mol SnO and 0.20 mol SnO₂
- d. 0.10 mol Na_2O and 0.10 mol Na_2SO_4
- e. 0.20 mol Ca(OH)₂ and 0.10 mol H₂C₂O₄