Balancing

Balancing using Half-reactions

$$
\mathrm{H}_{2} \mathrm{~S}+\mathrm{HNO}_{3} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

Just by inspection who is the oxidizer and who is the reducer?

Separate ionic substances

$$
\mathrm{H}_{2} \mathrm{~S}+\mathrm{HNO}_{3} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

Sometimes reactions are given a full ions and sometime just as net ionic. Either way switch to net ionic. Anything that doesn't change gets

$$
\mathrm{H}_{2} \mathrm{~S}+\mathrm{H}^{+}+\mathrm{NO}_{3}^{-} \rightarrow 2 \mathrm{H}^{+}+\mathrm{SO}_{4}^{-2}+\mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

They will be added back in at the end. Alternately the reaction could be given with out the water and H^{+}'s either.

$$
\mathrm{H}_{2} \mathrm{~S}+\mathrm{NO}_{3}^{-} \rightarrow \mathrm{SO}_{4}^{-2}+\mathrm{NO}_{2}
$$

Balancing using Half-reactions

$$
\mathrm{H}_{2} \mathrm{~S}+\mathrm{NO}_{3}^{-} \rightarrow \mathrm{SO}_{4}^{-2}+\mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

The HNO_{3} is going to be giving oxygen away. (oxidizer)
$\mathrm{H}_{2} \mathrm{~S}$ is going to be accepting oxygen. (Reducer)

Balancing using Half-reactions Split into half reactions
 $$
\mathrm{H}_{2} \mathrm{~S}+\mathrm{NO}_{3}^{-} \rightarrow \mathrm{SO}_{4}^{-2}+\mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

$$
\begin{aligned}
& \mathrm{NO}_{3}^{-} \rightarrow \mathrm{NO}_{2} \\
& \mathrm{H}_{2} \mathrm{~S} \rightarrow \mathrm{SO}_{4}^{-2}
\end{aligned}
$$

Balancing using Half-reactions Use water to balance oxygen
 $$
\mathrm{H}_{2} \mathrm{~S}+\mathrm{NO}_{3}^{-} \rightarrow \mathrm{SO}_{4}^{-2}+\mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

$$
\begin{gathered}
\mathrm{NO}_{3}^{-} \rightarrow \mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O} \\
4 \mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{~S} \rightarrow \mathrm{SO}_{4}^{-2}
\end{gathered}
$$

Balancing using Half-reactions Use Hydronium ions to balance H

$$
\mathrm{H}_{2} \mathrm{~S}+\mathrm{NO}_{3}^{-} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

$$
\begin{gathered}
2 \mathrm{H}^{+}+\mathrm{NO}_{3}^{-} \rightarrow \mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O} \\
4 \mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{~S} \rightarrow \mathrm{SO}_{4}^{-2}+10 \mathrm{H}^{+}
\end{gathered}
$$

Balancing using Half-reactions Balance Charge

$$
\begin{gathered}
\mathrm{H}_{2} \mathrm{~S}+\mathrm{NO}_{3}^{-} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O} \\
1 \mathrm{e}^{+}+2 \mathrm{H}^{+}+\mathrm{NO}_{3}^{-} \rightarrow \mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O} \\
4 \mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{~S} \rightarrow \mathrm{SO}_{4}^{-2}+10 \mathrm{H}^{+}+8 \mathrm{e}^{-}
\end{gathered}
$$

Balancing using Half-reactions Balance half reaction electrons

$$
\mathrm{H}_{2} \mathrm{~S}+\mathrm{NO}_{3}^{-} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

$$
1 \mathrm{e}^{+}+2 \mathrm{H}^{+}+\mathrm{NO}_{3}^{-} \rightarrow \mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O}(\mathrm{x} 8)
$$

$$
4 \mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{~S} \rightarrow \mathrm{SO}_{4}^{-2}+10 \mathrm{H}^{+}+8 \mathrm{e}^{-}
$$

$$
8 \mathrm{e}^{+}+16 \mathrm{H}^{+}+8 \mathrm{NO}_{3}^{-} \rightarrow 8 \mathrm{NO}_{2}+8 \mathrm{H}_{2} \mathrm{O}
$$

$$
4 \mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{~S} \rightarrow \mathrm{SO}_{4}^{-2}+10 \mathrm{H}^{+}+8 \mathrm{e}^{-}
$$

Balancing using Half-reactions Combine and simplify

$$
\begin{gathered}
\mathrm{H}_{2} \mathrm{~S}+\mathrm{NO}_{3}^{-} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O} \\
8 \mathrm{e}^{+}+16 \mathrm{H}^{+}+8 \mathrm{NO}_{3}^{-} \rightarrow 8 \mathrm{NO}_{2}+8 \mathrm{H}_{2} \mathrm{O} \\
4 \mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{~S} \rightarrow \mathrm{SO}_{4}^{-2}+10 \mathrm{H}^{+}+8 \mathrm{e}^{-}
\end{gathered}
$$

$$
8 \mathrm{NO}_{3}^{-}+\mathrm{H}_{2} \mathrm{~S}+6 \mathrm{H}^{+} \rightarrow 8 \mathrm{NO}_{2}+4 \mathrm{H}_{2} \mathrm{O}+\mathrm{SO}_{4}^{-2}
$$

Balancing using Half-reactions

Combine ions to form compounds in original formula

$$
8 \mathrm{NO}_{3}^{-}+\mathrm{H}_{2} \mathrm{~S}+6 \mathrm{H}^{+} \rightarrow 8 \mathrm{NO}_{2}+4 \mathrm{H}_{2} \mathrm{O}+\mathrm{SO}_{4}^{-2}
$$

Recombine the originals ionic cations and anions

$$
\begin{gathered}
\mathrm{NO}_{3}^{-} \rightarrow \mathrm{HNO}_{3} \\
\underset{\mathrm{NO}_{3}^{-}+\mathrm{H}_{2} \mathrm{~S}+6 \mathrm{H}^{+}}{ } \rightarrow 8 \mathrm{NO}_{2}+4 \mathrm{H}_{2} \mathrm{O}+\mathrm{SO}_{4}^{-2} \\
+2 \mathrm{H}+ \\
8 \mathrm{HNO}_{3}+\mathrm{H}_{2} \mathrm{~S} \rightarrow 8 \mathrm{NO}_{2}+4 \mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{SO}_{4}
\end{gathered}
$$

Practice

- $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{4} \mathrm{~S}+? ? \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{SO}_{2}+\mathrm{H}_{2} \mathrm{O}$
- What is the coefficient for Oxygen?
A. 6
B. 7
C. 12
D. 14
E. 28

Practice

- $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{4} \mathrm{~S}+12 \mathrm{O}_{2} \rightarrow 10 \mathrm{CO}_{2}+\mathrm{SO}_{2}+6 \mathrm{H}_{2} \mathrm{O}$
- What is the coefficient for Oxygen?
- Trying to figure this out by standard means would take forever.
- If it looks confusing start with inspection first.
- 12 is the answer.

Practice 2

- Which of the following is true regarding. $\mathrm{H}_{2} \mathrm{Se}+4 \mathrm{O}_{2} \mathrm{~F}_{2} \rightarrow \mathrm{SeF}_{6}+2 \mathrm{HF}+4 \mathrm{O}_{2}$
A. The oxidation number of O does not change.
B. The oxidation number of H changes from -1 to +1
C. The oxidation number of F changes from +1 to -1
D. The oxidation number of Se changes from -2 to +6
E. It is a disproportionation reaction for F .

$$
\begin{array}{lccc}
+2 & -4+4 & -6 \\
+1-2 & -2+2 & +6-1 & +1-1
\end{array} 00
$$

The oxidation number of Se changes from -2 to +6

Balancing using oxidation states

$$
\mathrm{H}_{2} \mathrm{~S}+\mathrm{HNO}_{3} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

Start with net ionic equation

Separate ionic substances

$$
\mathrm{H}_{2} \mathrm{~S}+\mathrm{HNO}_{3} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

Sometimes reactions are given a full ions and sometime just as net ionic. Either way switch to net ionic. Anything that doesn't change gets

$$
\mathrm{H}_{2} \mathrm{~S}+\mathrm{H}^{+}+\mathrm{NO}_{3}^{-} \rightarrow 2 \mathrm{H}^{+}+\mathrm{SO}_{4}^{-2}+\mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

They will be added back in at the end. Alternately the reaction could be given with out the water and H^{+}'s either.

$$
\mathrm{H}_{2} \mathrm{~S}+\mathrm{NO}_{3}^{-} \rightarrow \mathrm{SO}_{4}^{-2}+\mathrm{NO}_{2}
$$

Balancing using oxidation states

Assign oxidation states

$$
\begin{aligned}
& +1-2+5-2+6-2+4-2+1-2 \\
& \mathrm{H}_{2} \mathrm{~S}+\mathrm{NO}_{3}^{-} \rightarrow \mathrm{SO}_{4}^{-2}+\mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

Split into half reactions

$$
\begin{aligned}
& +1-2+5-2+6-2+4-2+1-2 \\
& \mathrm{H}_{2} \mathrm{~S}+\mathrm{NO}_{3}^{-} \rightarrow \mathrm{SO}_{4}^{-2}+\mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

$$
\begin{gathered}
\mathrm{H}_{2} \mathrm{~S}+\mathrm{NO}_{3}^{-} \rightarrow \mathrm{SO}_{4}^{-2}+\mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O} \\
\mathrm{NO}_{3}{ }^{-} \rightarrow \mathrm{NO}_{2} \\
\mathrm{H}_{2} \mathrm{~S} \rightarrow \mathrm{SO}_{4}^{-2}
\end{gathered}
$$

Split into half reactions add electrons

$$
\begin{aligned}
& +1-2+5-2+6-2+4-2 \quad+1-2 \\
& \mathrm{H}_{2} \mathrm{~S}+\mathrm{NO}_{3}{ }^{-} \rightarrow \mathrm{SO}_{4}^{-2}+\mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

$$
\begin{aligned}
+5 & +4 \\
+1 \mathrm{e}^{-}+\mathrm{NO}_{3}^{-} & \rightarrow \mathrm{NO}_{2} \\
-2 & +6 \\
\mathrm{H}_{2} \mathrm{~S} & \rightarrow \mathrm{SO}_{4}^{-2}+8 \mathrm{e}-
\end{aligned}
$$

Split into half reactions

Balance half reaction electrons

$$
\begin{aligned}
& +1-2+5-2+6-2+4-2+1-2 \\
& \mathrm{H}_{2} \mathrm{~S}+\mathrm{NO}_{3}^{-} \rightarrow \mathrm{SO}_{4}^{-2}+\mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

$$
\begin{aligned}
+1 \mathrm{e}^{-}+\mathrm{NO}_{3}^{-} & \left.\rightarrow \mathrm{NO}_{2}\right) \times 8 \\
\mathrm{H}_{2} \mathrm{~S} & \rightarrow \mathrm{SO}_{4}^{-2}+8 \mathrm{e}-
\end{aligned}
$$

$+8 \mathrm{e}^{-}+8 \mathrm{NO}_{3}^{-} \rightarrow 8 \mathrm{NO}_{2}$

$$
\mathrm{H}_{2} \mathrm{~S} \rightarrow \mathrm{SO}_{4}^{-2}+8 \mathrm{e}-
$$

Split into half reactions

Re-combine ionic compounds and balance by inspection $+8 \mathrm{e}^{-}+8 \mathrm{NO}_{3}^{-} \rightarrow 8 \mathrm{NO}_{2}$

$$
\mathrm{H}_{2} \mathrm{~S} \rightarrow \mathrm{SO}_{4}^{-2}+8 \mathrm{e}-
$$

$\mathrm{H}_{2} \mathrm{~S}+8 \mathrm{NO}_{3}{ }^{-} \rightarrow 8 \mathrm{NO}_{2}+\mathrm{SO}_{4}^{-2}+\mathrm{H}_{2} \mathrm{O}$
$\mathrm{H}_{2} \mathrm{~S}+8 \mathrm{HNO}_{3} \rightarrow 8 \mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4}+4 \mathrm{H}_{2} \mathrm{O}$

