Introduction to Electrochemical reactions

Schweitzer

Electrochemistry

- Create and or store electricity chemically.
- Use electricity to drive a reaction that normally would not run.
 - Plating metal onto a metal another metal is sometimes driven by electricity.

Terms

- Charge:
 - Coulomb
 - 1 mole of electrons posses 96500 coulombs of charge = 1 Faraday
- Voltage: Difference of charge
 - EMV: Electromotive force
 - E
 - V
- Current: Amount of current flowing
 - I
 - Amps

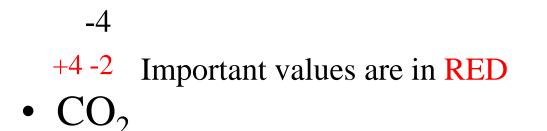
Oxidation Reduction reactions

- An oxidation reduction reaction is where electrons are transferred from one atom to another.
- Therefore, the charges will be changing.

• Oxidation state: Apparent charge on atom.

Oxidation states

- If you can track the apparent charges on an atom then you can verify conclude a reaction is a redox reaction
- You will be given a list of rules to find the oxidation states.
- Apply rules to both sides of a reaction and look to see where charges change ③


Rules for oxidation states

1. Oxygen = -2

Exception: Peroxides = -1 (H-O-O-H)

- 2. Hydrogen = +1Exception = Hydrides = -1 (CaH₂)
- 1. Ionic charges = oxidation states
- 2. Elements = 0
- 3. Sum of the oxidation states = overall charge

Examples

+2 -14 +1 +6 -2

• $K_2Cr_2O_7$

-8 +1 +7 -2 Try KMnO₄

Example equation

Combustion reaction -- Redox +4 -4 +2 -4 +1 0 +4 -2 +1 -2 $CH_4 + O_2 \rightarrow CO_2 + H_2O$

Double displacement – Not a redox

+1 +5 -6 +1 -1 +1 -1 +1 +5 -2 $AgNO_3 + NaCl \rightarrow AgCl_{(s)} + NaNO_{3(aq)}$

Oxidation

Old definition

- Oxidation is and old term used to describe the process of a chemical gaining oxygen.
 C + O₂ → CO₂
 Carbon is being oxidized.
- Still a good definition but is not complete.

Oxidation

New Definition

- A substance that loses electrons to another substance.
- Leo -- Lose electrons Oxidized $C^0 + O^0 \rightarrow C^2 \overleftarrow{O_2}$ Oxidation state

Oxidation state on C is +4

 $C^0 \rightarrow C^{+4} + 4e$ -

Reduction

Old Definition

 Reduction is the old term used to describe the process of a chemical losing oxygen.
 KMnO₄ → Mn⁺²
 In this case the KMnO₄ is losing oxygen.

Reduction

New Definition

- Gain electrons from another substance
- GER Gain Electrons Reduce

- $KMnO_4 \rightarrow Mn^{+2}$
- $K^{+1}Mn^{+7}O^{-2} \rightarrow Mn^{2+}$
- So $Mn^{7+} + 5e^- \rightarrow Mn^{2+}$ This is reduction

Oxidizing/Reducing Agent Reducing/Oxidizing Agent

These two sets of terms have the same meaning Oxidizer –a chemical that loses electrons to another chemical

Reducing Agent – a chemical that causes another chemical to gain electrons

Reducer – a chemical that gains electrons from another chemical

Oxidizing Agent – a chemical that causes another chemical to lose electrons.

Oxidation vs. Reduction

- Oxidation can NOT occur without reduction.
- In order to lose an electron there must be something to accept it.
- Strong Oxidizers are weak reducers
 - In other words, if a substance wants to get ride of electrons really bad then it isn't going to want to take them. Or vice versa.

Single displacement -- Redox

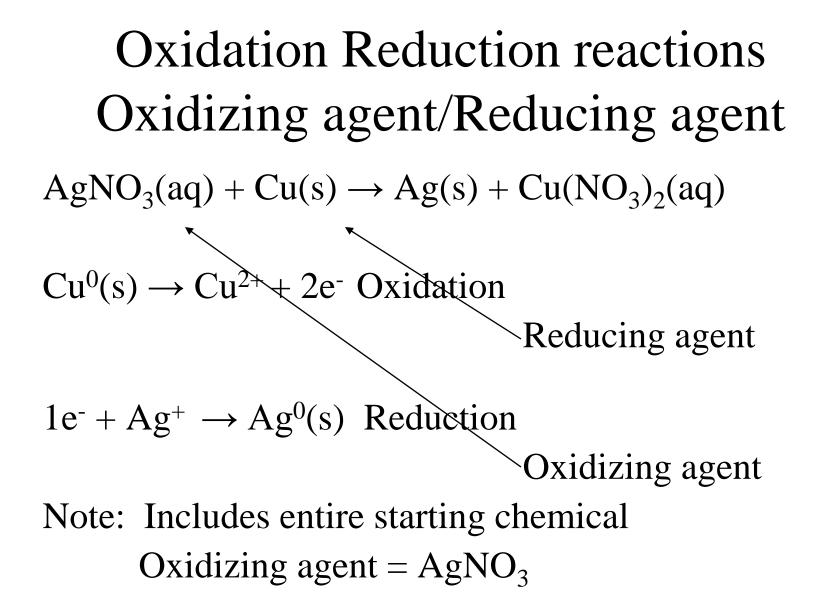
Molecular equation (aqueous ions separate) $AgNO_3(aq) + Cu(s) \rightarrow Ag(s) + Cu(NO_3)_2(aq)$ Ionic equation (better representation of ions) $Ag^+ NO_3^- + Cu(s) \rightarrow Ag(s) + Cu^{2+} + NO_3^-$ Net Ionic equation (eliminates spectator ions) $Ag^+ + Cu^0(s) \rightarrow Ag^0(s) + Cu^{2+}$ Spectator ions

Closer look

 $Ag^+ + Cu^0(s) \rightarrow Ag^0(s) + Cu^{2+}$

$Cu^{0}(s) \rightarrow Cu^{2+} + 2e^{-}$

1e⁻ + Ag⁺ → Ag⁰(s)
One electron will represent an oxidation and one will represent a reduction. Which is which????

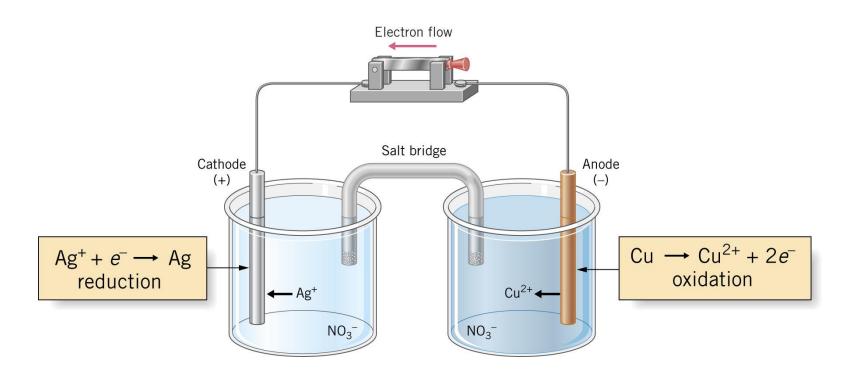

Closer look

$$Ag^+ + Cu^0(s) \rightarrow Ag^0(s) + Cu^{2+}$$

$$Cu^{0}(s) \rightarrow Cu^{2+} + 2e^{-} \text{(oxidation)}$$

$$\overbrace{le^{-} + Ag^{+} \rightarrow Ag^{0}(s) \text{ (reduction)}}$$

How would you balance this reaction?



Voltage or EMF or \mathcal{E}

• Every redox reaction will have a reaction potential. This is the strength or force over which the electron is being moved.

Chapter 21: Electrochemistry

- Batteries serve as power sources for all types of gadgets
- The energy in a battery comes from a spontaneous redox reaction where the electron transfer is forced to take place through a wire
- The apparatus that provides electricity in this way is called a **galvanic** or **voltaic cell**

A galvanic cell. The cell consists of two half-cells where the oxidation and reduction half-reactions take place. The salt bridge is required for electrical neutrality. The overall *cell reaction* is: $2Ag^+(aq)+Cu(s) \rightarrow 2Ag(s)+Cu^2+(aq)$

- Cell reactions are obtained by adding the half-reactions
- Half-reactions are balanced using the **ion**-**electron method** (see Section 6.2)
- The electrodes are assigned the name **anode** or **cathode**
 - Reduction (electron gain) occurs at the cathode
 - Electrons appear as reactants in the half-reaction
 - Oxidation (electron loss) occurs at the anode
 - Electrons appear as products in the half-reaction

Determining Voltage or the potential of a chemical reaction

 $\frac{Ag^{+} + Cu^{0}(s) \rightarrow Ag^{0}(s) + Cu^{2+}}{Cu^{0}(s) \rightarrow Cu^{2+} + 2e^{-}} \qquad E_{\text{Oxidation}}: ???$

$$1e^{-} + Ag^{+} \rightarrow Ag^{0}(s) \qquad E_{reduction}: ???$$
$$E_{Oxidation} + E_{reduction} = E_{overall}$$

• Each half reaction has a potential to gain or lose electrons. A very active atom can force an electron on to an another atom even if the other atom doesn't want it. It is a back and forth battle.

Determining overall Voltage

 $\frac{\operatorname{Ag}^{+} + \operatorname{Cu}^{0}(s) \to \operatorname{Ag}^{0}(s) + \operatorname{Cu}^{2+}}{\operatorname{Cu}^{0}(s) \to \operatorname{Cu}^{2+} + 2e^{-}} \quad \operatorname{E}_{\operatorname{Oxidation}}: \ ???$

+ E is spontaneous - Δ G, +E, K >1 all represent spontaneous reactions

*** Where do we get electro potentials?***

- There are two types of electrical conduction in a galvanic cell
 - Metallic conduction occurs when electrons move through the wires
 - Electrolytic conduction occurs through the liquid by movement of ions, *not* electrons
- The movement of ions through the salt bridge and in solution is required for charge neutrality
 - Cations move in the general direction of the cathode
 - Anions move in the general direction of the anode

Finding Oxidation/Reduction potentials

- Chart of reduction potentials
 - You have been given a list of only reduction potentials in you workbook.
- How do you determine an oxidation potential?
 - Find reverse reaction (reduction) flip the equation and the sign.
 - $Cu^0 + 2e \rightarrow Cu^{2+} E: -.36v$
 - $Cu^{2+} \rightarrow Cu^0 + 2e- E: +.36v$

- The anode has **negative polarity** because the electrons left behind by the Cu²⁺ ions give it a slightly negative charge
- The cathode has **positive polarity** because of the Ag⁺ ions "joining" the electrode give it a slightly positive charge
- For convenience, a **standard cell notation** has been developed by chemists
 - Anode half-cell is specified on the left
 - Cathode half-cell is specified on the right
 - Phase boundaries are indicated using "|"
 - The salt bridge separates the anode and cathode and is indicated using "||"

 $\begin{array}{ll} \mathrm{Cu}^{0}(\mathrm{s}) \rightarrow \mathrm{Cu}^{2+} + 2\mathrm{e}^{-} & \mathrm{E}_{\mathrm{Oxidation}}: +.36 \\ \\ 1\mathrm{e}^{-} + \mathrm{Ag}^{+} \rightarrow \mathrm{Ag}^{0}(\mathrm{s}) & \mathrm{E}_{\mathrm{reduction}}: +.76 \\ \\ & \mathrm{E}_{\mathrm{Oxidation}} + & \mathrm{E}_{\mathrm{reduction}} = +1.1\mathrm{V} \end{array}$

:	Standard Reduction Potentials	at 25°C		
	Reduction Half-Reaction		E° (V)	
Stronger	F₂(g) + 2 €	> 2 F⁻(aq)	2.87	Weaker reducing age
	H ₂ O ₂ (aq) + 2 H ⁺ (aq) + 2 e	$\longrightarrow 2 H_2O(l)$	1.78	
Reducer	MnO ₄ -(<i>aq</i>)+ 8 H*(<i>aq</i>)+ 5	$e^- \longrightarrow Mn^{2+}(aq) + 4 H_2O(l)$	1.51	reducing age
1	Cl ₂ (g) + 2 e ⁻		1.36	
	Cr ₂ O ₇ ^{2−} (aq) + 14 H*(aq) + 6 e [−] → 2 Cr ³ *(aq) + 7 H ₂ O(/)		1.33	
	O ₂ (g) + 4 H⁺(aq) + 4 €	$\longrightarrow 2 H_2O(I)$	1.23	
	Br ₂ (1) + 2 e ⁻	> 2 Br ⁻ (<i>aq</i>)	1.09	
	Ag*(aq)+ e⁻	$\longrightarrow Ag(s)$	0.80	
	Fe ³⁺ (aq) + e ⁻	> Fe ²⁺ (<i>aq</i>)	0.77	
	O ₂ (g) + 2 H*(aq) + 2 e	$\longrightarrow H_2O_2(aq)$	0.70	
	l₂(s) + 2 €	> 2 ⊢(aq)	0.54	
	$O_2(g) + 2 H_2O(l) + 4 e^{-1}$	\longrightarrow 4 OH ⁻ (aq)	0.40	
	Cu ² *(aq) + 2 e	$\longrightarrow Cu(s)$	0.34	
	Sn ⁴⁺ (aq) + 2 €	$\longrightarrow Sr^{2+}(aq)$	0.15	
	2 H*(aq) + 2 e	$\longrightarrow H_2(g)$	0	
	Pb ²⁺ (aq) + 2e ⁻	$\longrightarrow Pb(s)$	-0.13	
	Ni ² *(<i>aq</i>) + 2 e ⁻	$\longrightarrow Ni(s)$	-0.26	
	Cd ²⁺ (aq) + 2 €	$\longrightarrow Cd(s)$	-0.40	
	Fe ²⁺ (aq) + 2 e ⁻	$\longrightarrow Fe(s)$	-0.45	
	Zn ²⁺ (<i>aq</i>) + 2 e	$\longrightarrow Zn(s)$	-0.76	
	2 H ₂ O(/) + 2 €	\longrightarrow H ₂ (g) + 2 OH ⁻ (aq)	-0.83	
	AI ^{S+} (a			
Weaker oxidizing agent	Mg ² *(• Note: Voltage scale is relative.			Stronger
	Na⁺(aq)+e⁻	$\longrightarrow Na(s)$	-2.71	aronger
0 0	Li*(aq)+ e-	$\longrightarrow Li(s)$	-3.04	Oxidize

Determine the voltage for a reaction that contains Cu, Zn, Cu^{2+} , and Zn^{2+}

- $Cu^0 \rightarrow Cu^{2+} + 2e^ Cu^{2+} + 2e^- \rightarrow Cu^0$
- $Zn^0 \rightarrow Zn^{2+} + 2e^ Zn^{2+} + 2e^- \rightarrow Zn^0$
 - Who has the potential to take from who?
 - Cu⁰ can't give e⁻ to Zn causing zinc to become Zn²⁻
 - Cu has to give e^- to Zn^{2+}

Determine the voltage for a reaction that contains Cu, Zn, Cu^{2+} , and Zn^{2+}

- Option 1
- $Cu^0 \rightarrow Cu^{2+} + 2e^- E = -.34$
- $Zn^{2+} + 2e^{-} \rightarrow Zn^0 E = -.76$
- Option 2 E = -1.1V
- $Cu^{2+} + 2e^{-} \rightarrow Cu^0 E = +.34$
- $\operatorname{Zn}^{0} \to \operatorname{Zn}^{2+} + 2e^{-} E = +.76$ E = +1.1V

Spontaneous

Galvanic Cell Notation

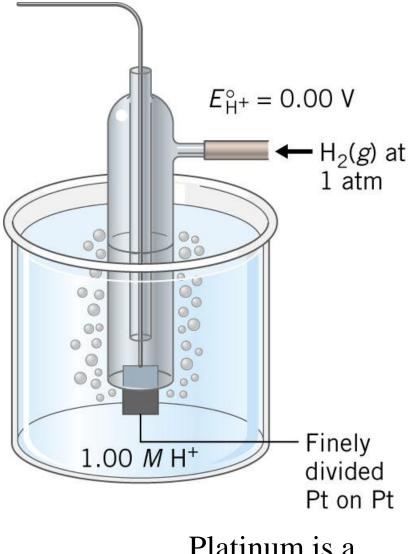
- $\operatorname{Cu}^{2+} + 2e^{-} \rightarrow \operatorname{Cu}^{0} E = +.34$
- $Zn^0 \rightarrow Zn^{2+} + 2e^- E = +.76$ E = +1.1V

 $Cu^{2+}|Cu^{o}||Zn|Zn^{2+}$

• The cell diagram for the copper-silver galvanic cell is

 $\begin{aligned} & \text{Cu}(s)|\text{Cu}^{2+}(aq)||\text{Ag}^{+}(aq)|\text{Ag}(s) \\ & \text{(anode)} \end{aligned} \tag{cathode} \end{aligned}$

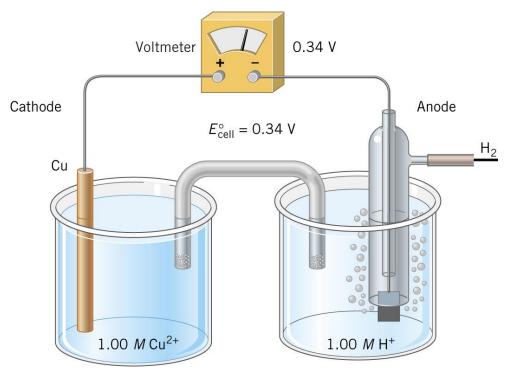
- Galvanic cells can push electrons through a wire
- The magnitude of this ability is expressed as a **potential**
- The maximum potential a given cell can generate is called the **cell potential**, E_{cell}


- The cell potential depends on the temperature and composition
- The standard cell potential, E°_{cell} , is the cell potential measured at 298 K (25°C) with all ion concentration 1.00 *M*
- Standard cell potentials are rarely more than a few volts
 - E_{cell}^{o} for the copper-silver galvanic cell is 0.46 V
 - E^{o}_{cell} for a single cell in a car battery is about 2 V

- The tendency for a species to gain electrons and be reduced is its **reduction potential**
- When measured at standard condition, it is called the **standard reduction potential**, *E*^o
- When two half-cells are are connected:
 - The one with the larger reduction potential will acquire electrons and undergo reduction
 - The half-cell with the lower reduction potential will give up electrons and undergo oxidation

• The difference in the two standard reduction potentials gives the standard cell potential

$$E_{cell}^{o} = \begin{pmatrix} \text{standard reduction} \\ \text{potential of the} \\ \text{substance reduced} \end{pmatrix} + \begin{pmatrix} \text{standard oxidation} \\ \text{potential of the} \\ \text{substance oxidized} \end{pmatrix}$$


- It is not possible to measure the reduction potential of an isolated half-cell
- A reference electrode, called the **standard hydrogen electrode**, has been *assigned* the potential of exactly 0 V

The standard hydrogen electrode. Hydrogen gas at 1 atm is passed over finely divided platinum. The solution contains 1.00 *M* hydrogen ion. The reduction potential is exactly 0 V at 298 K $(25^{\circ}C).$

Platinum is a common surface

• Using a hydrogen half-cell, other reduction potentials can be measured

A galvanic cell comprised of copper and hydrogen half-cells. The reaction is $Cu^{2+}(aq)+H_2(g) \rightarrow$ $Cu(s)+2H^+(aq)$

Cell notation: Pt(s), H₂(g)|H⁺(aq)||Cu²⁺(aq)|Cu(s)