Electronic structure

Schweitzer

Monatomic vs. Polyatomic

- Monatomic ion: single atom ion
$-\mathrm{Na}^{+}$
- Polyatomic Ion (Family)
- NH_{4}^{+}Ammonium

Ion Quizes

- You will be quizzed on the names and formulas of these common ions
- Quiz
- All Cations
- -1 anions
- $=2 /-3$ anions
- All ions

IONS... THINGS TO REMEMBER

- Some metals have more then one charge we denote this charge by the Name as a Roman Numeral
- Copper (I) Cu ${ }^{+1}$

Copper (II) Cu^{+2}

- Iron (II) Fe^{2+}
- Iron (III) Fe^{3+}

IONS... THINGS TO REMEMBER

- F^{-1} Flouride is an anion. It has a special ending "ide"
- Flourine: F_{2} is a very deadly gas!
- Flouride: F^{-1} is in your tooth paste!
- This special ending is for a anions specific charge

IONS... THINGS TO REMEMBER

- Nitrate vs. Nitrite
$-\mathrm{NO}_{3}^{-}$vs. NO_{2}^{-}
- ate vs. ite
- Both contain oxygen
- ate contains one more oxygen then ite

Example:

- Sulfate: $\mathrm{SO}_{4}{ }^{-2}$
- Sulfite: $\mathrm{SO}_{3}{ }^{-2}$

IONS... THINGS TO REMEMBER

- Some prefixes also give you information as well.
- "per" 1 more oxygen
- "hypo" 1 less oxygen
Perchlorate
$\mathrm{ClO}_{4}{ }^{-1}$
Chlorate
$\mathrm{ClO}_{3}{ }^{-1}$
Chlorite
ClO_{2}^{-1}
Hypochlorite
ClO^{-1}

Typical Practice Questions

- Ammonium:
- Lead (IV):
- $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-1}$:
- ClO_{4}^{-1} :

Typical Practice Questions

- Ammonium: NH_{4}^{+1}
- Lead (IV): Pb^{+4}
- $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-1}$: Acetate
- ClO_{4}^{-1} : Chlorate

Energy levels

- How many electrons are in each energy level?

$1^{\text {st }}$ energy level

Energy level	Number of electrons
1	
2	
3	
4	

$1^{\text {st }}$ energy level

Energy level	Number of electrons
1	$2 \mathrm{e}-$
2	
3	
4	

$1^{\text {st }}$ energy level

Energy level	Number of electrons
1	$2 \mathrm{e}-$
2	$8 \mathrm{e}-$
3	
4	

$1^{\text {st }}$ energy level

Energy level	Number of electrons
1	$2 \mathrm{e}-$
2	$8 \mathrm{e}-$
3	$18 \mathrm{e}-$
4	

$1^{\text {st }}$ energy level

Energy level	Number of electrons
1	$2 \mathrm{e}-$
2	$8 \mathrm{e}-$
3	$18 \mathrm{e}-$
4	$32 \mathrm{e}-$

Valence electrons

- Outer most electrons
- Take part in bonding
- Octet rule
- Atoms are most stable after attaining a full octet or a full outer shell.
- Will gain or loose or share to attain the same configuration of a noble gas.

How many valence electrons?

Atomic charges

- Given the opportunity atoms will be gaining or losing electrons to fill the outer shell. They want to be isoelectric with a nobel gass
- IsoElectric: Same number of electrons
- Ion: A charged particle
- Anion: gained electrons to be isoelectric with nobel gas
- Cation: Lost electrons to isoelectric with nobel gas

What does it mean to be isoelectric?

- Isoelectric with a nobel gas:
- $\mathrm{Na}^{+1} \mathrm{Mg}^{2+} \mathrm{Al}^{3+}$
- How many electrons does each of these atoms have?

Periodic Table of the Elements

What does it mean to be isoelectric?

- Isoelectric with a nobel gas:
- $\mathrm{Na}^{+1} \mathrm{Mg}^{2+} \mathrm{Al}^{3+} \mathrm{Ne}$
- How many electrons does each of these atoms have? 10...

Periodic Table of the Elements

1 ${ }^{\text {st }}$ Family - Alkali metals

- 1 Valence electron
- Gain 7 electrons
- Lose 1
- Which is easiest?
- K^{+}

Periodic Table of the Elements

$2^{\text {nd }}$ Family - Alkaline Earth metals

- 2 Valence electron
- Gain 6 electrons
- Lose 2
- Which is easiest?
Mg^{+2}

Periodic Table of the Elements

3rd Family Boron Family

- 3 Valence electron
- Gain 5 electrons
- Lose 3
- Which is easiest?
B^{+3}

Periodic Table of the Elements

$4^{\text {th }}$ Family - Carbon Family

- 4 Valence electron
- Gain 4 electrons
- Lose 4
- Which is easiest?

Periodic Table of the Elements

Metals vs. Non-metals

- Notice: To this points we have only lost electrons. These were all METALS!!
- METALS LOSE ELECTRONS = CATIONS
- NON-METALS GAIN ELECTRONS = ANIONS

$5^{\text {th }}$ Family - Nitrogen Family

- 5 Valence electron
- Gain 3 electrons
- Lose 5
- Which is easiest?

$$
\mathrm{N}^{-3}
$$

Note: Any negative ion will end with the suffix "ide".
This chemical is called Nitride

nitrogen

 p^{-3} is called?
$6^{\text {th }}$ Family - Oxygen Family

- 6 Valence electron
- Gain 2 electrons
- Lose 6
- Which is easiest?

$$
\mathrm{O}^{-2}
$$

$7^{\text {th }}$ Family - Halogens

- 7 Valence electron
- Gain 1 electrons
- Lose 7
- Which is easiest?
Br^{-1}

What is the charge?

Atomic masses in parentheses are those of the most stable or common isotope

	58 Ce Cerium 140.115 1					$\mathbf{S}_{\text {Samarium }}$				64 Gd 3 actolinitam				68 Er Erbium	$\begin{gathered} \frac{2}{d} \\ \frac{10}{3} \\ \frac{0}{2} \end{gathered}$		$\begin{aligned} & 70 \\ & Y b \end{aligned}$			
39	90	${ }_{1}^{\frac{2}{8}}$	91 - ${ }^{\frac{2}{81}}$	92 䂴	93	94	${ }_{18}^{\frac{2}{8}}$	95	${ }_{18}^{\frac{2}{8}}$	96	97 - ${ }_{1}^{\frac{2}{8}}$	98 ,	99	100		101	102	${ }_{18}^{\frac{2}{3}}$	103	

