Practice for Proficiency Half-Lives

Concept of	of ha	alf-	life
------------	-------	------	------

 $X \rightarrow Y$

- 1. A 1st order reaction, has a half-life of 10 seconds, after 30 seconds answer the following questions.
 - a. How many half lives has the reaction undergone? \square

b. The reaction is speeding up, slowing down or remaining the same speed.

- 2. A zero-order reaction has a concentration of 1.0M and after 10seconds the concentration is at 0.5M. Answer the following questions.
 - a. Does the rate of this reaction (increase, decrease, remain the same) as the concentration of the reactant changes?
 - b. How much will be left of X after the reaction runs for 20 seconds?

 $X \rightarrow Y$

- 3. In a different first order reaction the concentration of X is 1.5M and has a half-life of 25 seconds. Answer the following questions.
 - a. What is the concentration at 50 seconds? 1,5 ,75 , 375 , 375 , 27 b. What is the concentration at 75 seconds?
 - b. What is the concentration at 75 seconds?
- 4. Nuclear reactions and drugs in your body are common examples of half-life applications. In both these examples there is only 1 reactant. For all these examples the order for these processes is ?
- 5. As far as half-lives go, only sorder reactions work like we commonly think about half lives.

Calculations involving half-lives

 $X \rightarrow Y$

6. A reaction X starts at 0.5M and takes 10min to run down to 0.25M.

- a. What is the half-life of this reaction? $\bigcirc N^{-1}N$
- b. Use the first order integrated rate law to determine how long it will take this reaction to

run down to 0.1M (10) +1nC-13 [InC] +=-K++In[atk In[6]=-K(10) +In[./]

7. The reaction above has rate constant of 1.51/s. Answer the following questions. If it starts 0.5M, how long will it take to drop to 0.25M.