Introduction to Measurement

Schweitzer

Measurement basics

- A measurement is only as good as the tool used to measure it.

Accurate vs. Precise

- What is the difference between Accurate and precise?
- Accurate is how close the measured value is to the actual value.
- Precise is how close in proximity or value of several trials

Measure what you know then estimate one digit.

Measure what you know then estimate one digit.

- We know 29 for sure. So the digit after the decimal will be estimated. I say 29.5.
- Note: Since there is only 1 line for all the tenths digit that line is used to aid in estimation

Measure what you know then estimate one diait.

- What do you know? There is a mark for the hundreds spot. We know we have at least 300. The " 3 " is known. The tens spot will have to be estimated.

Measure what you know then estimate one diait.

- $3 \underline{6} 0$
- Someone else might say 350. This is perfectly good. The estimated digit can vary.

Measure what you know then estimate one diait.

- 360
- What is the role of this zero. Does it actually mean zero?

How to read liquids.

- Liquids will adhere to the sides of the container forming a meniscus.
Either read the top or the bottom of the arch.

Measure what you know then estimate 1 digit.

- Look at the scale. There is a mark for every milliliter and a half way mark that will aid in estimation.
- What do you think?

Measure what you know then estimate 1 digit. Practice 1

- We know the 15 for sure. I will then estimate the next digit at 1.
- 15.1 mL

Practice 2

What do you think?

Practice 2

There is a mark for every 10s spot so that is know and the ones spot must be estimated I am going with 53.

What do you

 think?Practice 3

It is a little hard to see but there is a line for each mL and 10 lines between for the tenths spot. Therefore we must estimate the to the hundreds spot.

Practice 4

Practice 4

We don't know anything so we must estimate the first digit.

Practice 5

- Triple beam balance

Largest weight

- 100 g

Tens digit weight

- $1 \underline{70}$

Ones digit

Tenths, hundredths and thousands

Estinnate be tween lines.
A pears to be right on the $9^{\text {th }}$ line

Give it a try?

255.469 g

Electronic balance

- Caution: These are very expensive. Do not press or overload.
- Cost: nearly $\$ 1000$.

Electronic balance

- An electronic balance allows you to subtract the weight of a container by pushing the tare button.

1. Place container on scale
2. Press tare button.
3. Fill container.
4. Re-weigh

Digital

- - Very easy just read it!!
- But always ask
yourself. Does this make sense?

