Student Practice

Projectile Motion- Vertical

A 5kg ball is dropped off a cliff. The cliff is 50m high.

- Scenario B is likely the simplest. The ball is simply dropped off the cliff.
 - a. Determine the time for the ball to reach the bottom?

 $V_{4} = V_{0} + v_{1}t + v_{2}a_{1}t^{2} = \sqrt{a_{1}t} + \sqrt{a_{1}t^{2}} = \sqrt{a_{1}t^{2}} + \sqrt{a_{$

- c. Student hypothesis: Halfway down the cliff the speed Is half of "b". Justify or

nullify this statement. $V_{5}^{2} = V_{1}^{2} + 2 \text{ ad}$ $V_{5}^{2} = V_{1}^{2} + 2 \text{ ad}$ $V_{5}^{2} = V_{5}^{2} + 2 \text{ ad}$

- 2. Scenario A has a ball that is thrown up at 20m/s, after which it falls back down.

a. How high does the ball go?

Of the Vi = At -208 = 2.0484b. How fast is the ball going just prior to impact?

Vi = Vi + At 20 + -9.8(4.08) = 20A How fast is Carried to the ball going just prior to impact?

- 3. How fast is Scenario C is thrown straight up at 20m/s falling 50m to the bottom of the cliff.

- How fast is Scenario D is thrown straight down at 20m/s falling 50m to the bottom of the cliff.
 - a. How much time is the ball in the air?
 - b. How fast is the ball going when it hits the ground?
 - c. Is there a relationship between the final speed of C and D?

a) Xt = Yo +Vit + 1/2 at2 Quadratic - 50 = 0 + - 201+) + - 4.9+2 T=1.75ec

