	Practice MC	Momentum 2014_203	15 Name	Key		_Hr	
		cts for 3.0 s on an object. The f mpulse was imparted by these	•	15 N and acts for one m	ote <u>C</u>		
	A) 19 N·s Im	B) 15 Nos pylse = F.t	Q27Ns Impulse = F:	D) 12 Nos t + F · t 2) 6 15 (0) = 2	7 N 15		
	2) A 0.060-kg tenn	is ball, initially moving at a sp opposite direction at a speed o	peed of 12 m/s, is struck by	a racket causing it to	· <u>D</u>		
	A) 1.1 kg·m/s	B) 0.72 kg m/s 12 P= Pe - Pi = .	C) 0.36 kg·m/s .0600 (-18) -	### DP 1.8 kg·m/s ### O6 C 12) = -	1.8kgm		
	,	, traveling with a velocity v, st gether in this head-on inelasti lision?		of the initial kinglic onorc	ni)	1 V2	13 Retained
	(D)2/3 P	11:PF 3m Vf	C)1/4 Vf = 号	(a) 1/3	M N ₃	1-3=	3" Last"
	4) The area under t	he curve on a Force versus tim	ne (F vs. t) graph represent	}	A		. •
N.S	@impulse.	B) momentum.	C) kinetic energy.	D) work.			
Ł	•	rch ball rolling with a speed of peed after the collision will be		avy exercise ball at rest,	A		
	(A) 6.0 m/s.	B) 3.0 m/s.	° C) 12 m/s.	D) 0.			
	m/s. A 70-kg st	f mass 200 kg, rolls with neglig unt man drops straight down ; oving after this happens?					
	A) 2.8 m/s	B)7.4m/s PI = Pf 2000= 270V	C) 4.7 m/s	D) 10 m/s			
		v=7	, 4				

4		Pix = Pfx $0 = 5(-8) +$	4(10) 10	14= Pfy 141 = 1 Vf V = 40					
{3)	A small bomb, of mass 10 kg, is moving toward the North with a velocity of 4.0 m/s. It explodes into three fragments: a 5.0-kg fragment moving west with a speed of 8.0 m/s; a 4.0-kg fragment moving east with a speed of 10 m/s; and a third fragment with a mass of 1.0 kg. What is the velocity of the third fragment? (Neglect air friction.)								
	A) zero		0 m/s south						
	G)40 m/s north	D) ne	one of the above						
14)	In an elastic collision, if the momentum about kinetic energy?	ing statements is true							
	A) Kinetic energy is lost.		lnetic energy is gain	ed.					
	(C)Kinetic energy is also conserved.	D) no	one of the above						
5)	A handball of mass 0.10 kg, traveling he What is the change in the momentum of	xizontally at 30 m / the ball?	s, strikes a wall and	l rebounds at 24 m/s.	<u>A</u>				
	₩ 5.4 kg·m/s № 72 kg·m/	s C) 1.:	2 kg·m/s	D) 0.60 kg·m/s					
6)	A 3.0-kg object moves to the right at 4.0 the left at 2.0 m/s. Which statement is c	m/s. It collides he orrect? P_i $3C4$	ad-on with a 6.0-kg $+6(-3)-0$	g object moving to	A				
	(A) The total momentum both before a	nd after the collisio	n is zero.	•					
	B) The total momentum both before a		~						
	C) The total momentum before the col	lision is 24 kg·m/s,	and after the collisi	on is 0 kg·m/s.					
	D) None of the above is true.	· · · · · · · · · · · · · · · · · · ·	Profession (Control of the Control o		A				
7)	A 2000-kg car, traveling to the right at 3 What is the average force the car exerts o	0 m/s, collides with on the wall?	h a brick wall and co	Domes to rest in 0.20 s. - 60000 - F(, F=-300,000 N Newtons 3rd of 6.0 m/s. It	<u>(</u>				
	A) 60,000 N to the right		,000 N to the right	-60000 = 1 c.	e all				
	$\triangle P = (0 - 300,000 \text{ N to the right})$	D) no	ne of the above	F= 300,000 N	Cyr				
•	$\Delta \Gamma = (0 - 3.00)$ A car of mass 1000 kg moves to the right collides directly with a stopped motorcy collision?	along a level, strai	ght road at a speed o						
	A) $10,000 \mathrm{kg \cdot m}/\mathrm{s}$ to the right	B) zer							
for a	C) 2000 kg·m/s to the right P = 1000 (6) + 6	00(0) = +6	00 kg·m/s to the right	ht Pi-Pe	n				
) 	In a game of pool, the white cue ball hits line of motion. What is the angle of defice A) 75° B) 35°	tne #9 ball and is c ction below the ori C) 90°	iginal line of motion	fie to the original for the #9 ball?	Antimoteor and a malar domains				
		ŕ			Λ				
3 0) T	When a cannon fires a cannonball, the ca								
	Amomentum of the cannonball and ca								
	B) momentum of the cannon is greaterC) energy of the cannonball and cannot	than the energy of	the carmonball.		.61				
	D) energy of the cannon is greater than	the energy of the <i>a</i> :	annonhall		LMC030;				
	(a)	n	ρ	i mainas	LM SINDI				
	350	ix thiy =	IFM COSSS	msin35)					
	7	IX + riy	1 HALAS						
	(MG)	5 YM + C	I CTOM						

Momentum Free Response Practice 2014 15

Name Key Hr.

- 1. A 1500 kg cannon and platform is at rest on a frozen lake. In addition to the cannon on the platform there are two 70 kg cannon balls. The cannon is loaded with a 70 kg cannon ball is fired horizontally at 300 m/s.
- A) What is the speed of the cannon after the shot is fired? 13.38 3
- B) How far will the platform and cannon travel if the uk=.05? 182.56 W

$$P_{i} = P_{f}$$

$$1500(0) + 70(0) + 10(0) = 1570 V_{f} + 70(300)$$

$$V_{f} = -13.38$$

$$V_{f} = -189.56M$$

$$V_{f} = -189.56M$$

- A firework with a mass of 15g initially at rest explodes into three parts. One of the parts, of mass 5.0g, moves at 34 m/s along the negative y-axis. A second part with a mass 2.4g moves at 34° E of N with a speed of 6.0 m/s. Determine the third part's speed and direction of motion. (Assume the mass is completely conserved.)
- A) Velocity 30.81 M/5
- B) Direction <u>d.89° Wof 5</u>

 Pt= -.008 i t -.158 j

 .0076 v = -1.08 3 i t 20.79 j

Pf .005 -34 -17 270 0 -17
Pt .005 -34 -17 270 0 -17
Pt .006 6 .014 56 .008 .0119
.0076 V .0076V [.008] [.158]

- 3. The head of a hammer with a mass of 2 kg strikes a nail and bounces back with the same speed in the opposite direction. This elastic collision last for a time of .075 sec.
- A) What is the average force the hammer exerts on the nail?
- B) How much Kinetic Energy was "Lost'? O J hecause its

 Elastic !!

- **4.** Two blocks of masses $m_1 = 3.00$ kg and $m_2 = 5.00$ kg are each released from rest at a height of 5.00 m on a frictionless track, as shown in Figure A, and undergo an **elastic** head-on collision.
- A) Determine the velocity of each block just before the collision.

B) Determine the velocity of each block immediately after the collision.

Vleft block =
$$\frac{-14.83\%}{3(9.89) + 5(-9.89)}$$
 Wright block= $\frac{4.945}{3(9.89) + 5(-9.89)}$ VfA (3+5) VfB - $\frac{3(9.89) + 5(-9.89)}{(3+5)}$ VfB - $\frac{3(9.89) + 5(-9.89)}{(3+5)}$

C) Determine the maximum heights to which EACH MASS rises after the collision.

5. A 60 kg astronaut is floating toward the front of her stationary spaceship at .2 m/s relative to her spaceship. She wishes to stop moving relative to the ship. To accomplish this task she decides to throw away the 2.5 kg book she is carrying.

A) Should she throw her book toward or away from the spaceship?

B) At what speed should she throw her book? * SM/S

$$P_1 = PF$$
 (0)
 $60(.3) + 3.5(.3) = 600 + 3.5$ $\sqrt{}$

CR 15tick- Inchesict CR=1 Bounce OFF-Elastic Atom/ wolecule Ridig Surface DP - PF -PI AKE = KET- KE; J-PE h= 8,11m + MU2-Mah + (13.84/p) = 9.8hp f 93 PE KE) = FEF VEB = PATPBTCR (VA-VB) My CR=1 1.John VF= + E4.85-4.85) + 1057 (4.85) KE VF=-17.848 (05901.057) Wgh = & MV2 4.8(1.30) = \$ V2 5-Xit Vit t satz V= 4.85 3 1,20=0+0(+5+9.8t2 J. 245 = 12 6=,495 V == U; + 4 t = 0 + 9.86.495) Ve=4,85,005