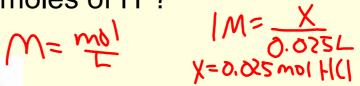
titration

technique where a solution of known concentration is used to determine the concentration of an unknown solution

NaOH + HCI
$$\longrightarrow$$
 HOH + NaCI net ionic: OH- + H+ \longrightarrow HOH || \bigcirc \bigcirc -0.625ml \bigcirc 0.625ml



How many mL of 1.0 NaOH will neutralize 25 mL of 1.0M HCI?

burette: 1.0 M NaOH

$$\int_{1}^{1} M = \frac{6.625 \, \text{mol}}{x \, \text{L}} \times \frac{25 \, \text{ml}}{25 \, \text{ml}}$$
 flask: 25 mL of 1.0 M HCI

moles of H+?

indicator: phenolphthalein

Equivalence point

point in which have equal number of moles of acid and base

titration.notebook **April 21, 2015**

A 50 mL sample of unknown acid need to be determined. The sample is titrated against 0.64M KOH. In the titration, 63.5 mL of KOH was required to reach equivalence.

NOH + H+
$$\longrightarrow$$
 HOH + K+ \longrightarrow net ionic: OH- + H+ \longrightarrow HOH/ \bigcirc

burette: 0.64 M KOH 63.5 mL titrated

flask: 50 mL of an acid moles of H+? Molarity (+1)?