Single Replacement Reactions

Single Replacement Reactions

General form:

$$A + BC \rightarrow AC + B$$

$$Mg + CuSO_4 \rightarrow MgSO_4 + Cu$$

Potassium reacts with Water

$$2K + 2HOH \rightarrow 2KOH + H_2$$

Single Replacement Reactions

One <u>cation</u> replaces another <u>cation</u>. metal

$$Mg + Zn(NO_3)_2 \longrightarrow Mg(NO_3)_2 + Zn$$

$$\longrightarrow A + BC \longrightarrow AC + B$$

$$\swarrow MNM \longrightarrow M$$

One <u>anion</u> replaces another anion.

non-metal
$$\rightarrow$$
 non-metal \rightarrow 2NaBr + Cl₂ \rightarrow 2NaCl + Br₂ \rightarrow AB + C \rightarrow AC + B

Activity Series

Cations
Element Reactivity

H₂ Cu Hg Ag Pt Au

Li Anions Halogen Reactivity Rb K F_2 CI_2 Na Br₂ Mg 2 Mn Zn Cr Fe Ni Sn Pb

Most reactive on periodic table:

How do you determine if a reaction will occur, or if one element will replace another?

Look at the activity series.

- A reactive cation will <u>replace</u> any <u>cation below it</u> on the activity series.
- A reactive halogen anion will **replace** any **halogen anion below it** on the activity series

 F_2

Cl2

Br₂

 I_2

Au

Predict if these reactions will occur:

$$Mg + AlCl_3 \longrightarrow$$
 $Al + MgCl_2 \longrightarrow$
 $MgCl_2 + Al \longrightarrow$

Order of reactants <u>DOES NOT</u> determine how they react.

The question we must ask is:

Can the <u>single element</u> replace its <u>counterpart</u>?

More Practice:

Fe + HCl →

 $ZnSO_4 + Sn \rightarrow$

AI + $H_2SO_4 \rightarrow$

 I_2 + NaF \rightarrow

 F_2 + NaBr \rightarrow

Li Rb F_2 K Ba Ca Na Br₂ Mg I_2 Αľ Mn Zn Cr Fe Ni Sn Pb H_2 Cu Hg

Ag Pt Au

More Practice:

Fe + 2 HCl
$$\rightarrow$$
 FeCl₂ + H₂

$$ZnSO_4 + Sn \rightarrow NR$$

$$2 AI + 3 H_2SO_4 \rightarrow AI_2(SO_4)_3 + 3 H_2$$

$$I_2$$
 + NaF \rightarrow $?$

$$F_2$$
 + 2NaBr \rightarrow 399

Li Rb K F_2 Ba Cl_2 Na Br_2 Mg l_2 Mn Zn

Cr Fe

Ni Sn Pb H₂ Cu Hg Ag Pt Au The equation must contain the correct formulas for reactants and products

Representing Chemical Equations: Formula and Word Equations:

FORMULA EQUATIONS represent the reactant and products of a chemical reaction by their <u>symbols or formulas</u>

example:

The equation must contain the correct formulas for reactants and products

WORD EQUATIONS represent the reactant and products of a chemical reaction by their <u>names</u>

Write the word equation for the reaction of sodium bromide and chlorine to form sodium chloride and bromine

Example:

sodium bromide + chlorine ----- sodium chloride + bromine

Reactant

Product

 $2NaBr + Cl_2 \longrightarrow 2NaCl + Br_2$

		•	
v	ΔV	iew	
11	$\Box V$	יריטע	

Predict the products

(Write balanced formulas).

Write No Reaction if applies.

Balance the equation.

3) Write the symbols for the elements that exist as diatomics in their elemental state.

____ ____

Review	
Predict the products (balanced	
formulas).	
Write No Reaction if applies.	
Balance the equation. 1)Cu+CaCO ₃ \rightarrow	
2)Al +CuSO ₄ ->	
7) Write the symbols for the elements that exist as diatomics in their elemental state.	